Journal of Inorganic and General Chemistry
SHORT COMMUNICATION
Zeitschrift für anorganische und allgemeine Chemie
(C6D5Br, 81.0 MHz, 300 K): δ = –13.8 ppm. EI-MS (m/z): 950 (56)
References
[M]+, 815 (7) [M – Ad]+. C64H64N4P2 (951.19): calcd. C 80.81,
H 6.78, N 5.89%; found: C 80.56, H 6.81, N 5.94%.
[1] a) W. Wolfsberger, W. Hager, Z. Anorg. Allg. Chem. 1977, 433,
247–254; b) W. Wolfsberger, W. Hager, Z. Anorg. Allg. Chem.
1976, 425, 169–174.
Synthesis of Binam(PPh2N(H)Dipp)2 (3): To a stirred solution of
Binam-P (5.76 g, 8.83 mmol) in 50 mL toluene, DippN3 (3.80 g,
18.7 mmol, 2.12 equiv.) was added and heated at 100 °C for 15 h (slow
gas evolution). The reaction proceeding was monitored by 31P NMR
spectroscopy. The yellow reaction mixture was concentrated to one-
fourth of the original volume, heated until dissolution of small amount
of precipitate and hexane (60 mL) was added in six portions whilst
stirring. The solid formed was filtered off and dried in vacuo. Yield:
70% (6.20 g). Performing the same reaction in THF resulted in forma-
[2] a) O. J. Scherer, P. Klusmann, Angew. Chem. Int. Ed. Engl. 1968,
7, 541–542; Angew. Chem. 1968, 80, 560–561; b) O. J. Scherer,
G. Schieder, Chem. Ber. 1968, 101, 4184–4198.
[3] a) H.-J. Cristau, C. Garcia, Synthesis 1990, 315–317; b) H.-J. Cri-
stau, I. Jouanin, M. Taillefer, J. Organomet. Chem. 1999, 584,
68–72.
[4] For recent review on chiral iminophosphoranes as superbases see:
H. Krawczyk, M. Dziegielewski, D. Deredas, A. Albrecht, Ł. Al-
brecht, Chem. Eur. J. 2015, 21, 10268–10277.
[5] a) D. Uraguchi, R. Tsutsumi, T. Ooi, J. Am. Chem. Soc. 2013,
135, 8161–8164; b) T. Takeda, M. Terada, J. Am. Chem. Soc.
2013, 135, 15306–15309; c) X. Gao, J. Han, L. Wang, Synthesis
2016, 48, 2603–2611; d) J. Han, Y. Zhang, X.-Y. Wu, H. N. C.
Wong, Chem. Commun. 2019, 55, 397–400.
[6] a) M. G. Núñez, A. J. M. Farley, D. J. Dixon, J. Am. Chem. Soc.
2013, 135, 16348–16351; b) A. M. Goldys, M. G. Núñez, D. J.
Dixon, Org. Lett. 2014, 16, 6294–6297.
[7] S. A. Ahmed, M. S. Hill, P. B. Hitchcock, S. M. Mansell, O.
St John, Organometallics 2007, 26, 538–549.
[8] J. F. Kögel, N.-J. Kneusels, J. Sundermeyer, Chem. Commun.
2014, 50, 4319–4321.
1
tion of 3·THF solvate, which was identified only by H and 31P NMR
spectroscopy and elemental analysis, due to very low solubility in all
common organic solvent. 1H NMR (C6D6, 300.1 MHz, 300 K): δ =
3
3
0.92, 1.07 (2ϫd, JHH = 7.1 Hz, 2ϫ6 H,Me2CH), 3.50 (sept, JHH
=
2
7.1 Hz, 2 H, Me2CH), 5.70 (d, JHP = 10 Hz, 1 H, N(H)), 6.70–7.10
(m, 9 H, Ar), 7.35– 7.50 (m, 4 H, Ar), 7.86 (m, 2 H, o-Ph), 7.98 (d,
J = 8.9 Hz, 1 H, o-Ph) ppm. 13C{1H} NMR (C6D6, 75.5 MHz, 300 K):
δ = 23.7, 23.8 (2ϫs, Me2CH), 28.9 (Me2CH), 116.1 (d, JCP = 8.7 Hz,
2-CAr), 119.0 (p-Dipp), 120.5(CAr), 123.1 (m-Dipp), 124.3 (CAr), 124.9
(CAr), 129.9 (d, JCP = 6.3 Hz, p-Ph), 131.1 (d, JCP = 9.8 Hz, o-Ph),
131.2, 131.7,132.7 (d, JCP = 9.8 Hz, o-Ph’), 133.3, 134.2, 139.8 (CDipp
CHMe2), 142.0 (d, JCP = 7.5 Hz, ipso-Dipp), 143.4 ppm. 31P{1H}
NMR (C6D6, 81.0 MHz, 300 K): –17.0 ppm. C68H68N4P2
(1003.27): calcd. C 81.41, H 6.83, N 5.58%; found: C 81.18, H 7.00,
N 5.78%.
-
[9] a) K. A. Rufanov, B. Ziemer, M. Hummert, S. Schutte, Eur. J.
Inorg. Chem. 2004, 4759–4765; b) K. A. Rufanov, B. Ziemer, M.
Meisel, Dalton Trans. 2004, 3808–3809; c) K. A. Rufanov, A. R.
Petrov, V. V. Kotov, F. Laquai, J. Sundermeyer, Eur. J. Inorg.
Chem. 2005, 3805–3807; d) A. R. Petrov, K. A. Rufanov, B.
Ziemer, P. Neubauer, V. V. Kotov, J. Sundermeyer, Dalton Trans.
2008, 909–916; e) K. A. Rufanov, A. Spannenberg, Mendeleev
Commun. 2008, 18, 32–34; f) A. R. Petrov, K. A. Rufanov, N. K.
Hangaly, M. Elfferding, K. Harms, J. Sundermeyer, Mendeleev
Commun. 2010, 20, 197–199; g) A. R. Petrov, M. Elfferding, J.
Mobius, K. Harms, K. A. Rufanov, J. Sundermeyer, Eur. J. Inorg.
Chem. 2010, 4157–4166; h) N. K. Hangaly, A. R. Petrov, K. A.
Rufanov, K. Harms, M. Elfferding, J. Sundermeyer, Organometal-
lics 2011, 30, 4544–4554; i) Z. Jian, N. K. Hangaly, W. Rong,
Z. Mou, D. Liu, S. Li, A. A. Trifonov, J. Sundermeyer, D. Cui,
Organometallics 2012, 31, 4579–4587; j) Z. Jian, N. K. Hangaly,
A. R. Petrov, S. Li, W. Rong, Z. Mou, K. A. Rufanov, K. Harms,
J. Sundermeyer, D. Cui, Organometallics 2012, 31, 4267–4282;
k) N. K. Hangaly, A. R. Petrov, M. Elfferding, K. Harms, J. Sun-
dermeyer, Dalton Trans. 2014, 43, 7109–7120.
δ
=
X-ray Diffraction: Data were collected with a STOE IPDS1 dif-
fractometer using graphite monochromated Mo-Kα radiation (λ =
0.71073 Å) at 180(2) K. The structures were solved by direct methods
using and SHELXS-97[17a] and refined by full-matrix least-squares on
F2 Fourier syntheses using SHELXL-2014/7[17b] software. The
hydrogen atoms were introduced at calculated positions using a riding
model. The program Diamond 3.1c was used for structure representa-
tions.[18]
Crystal Data for 1·2DMSO: C56H64N4O2S2P2, Mr = 951.17, mono-
clinic, space group C2/c, a = 19.129(2) Å, b = 9.7850(10) Å, c =
27.595(5) Å, β = 91.98(2)°, V = 5162.1(12) Å3, Z = 4, dcalcd
=
[10] K. A. Rufanov, N. K. Pruß, J. Sundermeyer, Dalton Trans. 2016,
45, 1525–1538.
[11] a) B. Prashanth, S. Singh, J. Chem. Sci. 2015, 127, 315–325; b)
B. Prashanth, S. Singh, Dalton Trans. 2016, 45, 6079–6087; c)
B. Prashanth, D. Bawari, S. Singh, ChemistrySelect 2017, 2,
2039–2043.
1.224 g·cm–3, μ = 0.210 mm–1, F(000) = 2024, R1 = 0.0514 [from 2443
unique reflections with I Ͼ 2σ(I)], wR2 = 0.1105 [for all 4091 unique
reflections], GooF = 0.891.
Crystallographic data (excluding structure factors) for the structure in
this paper have been deposited with the Cambridge Crystallographic
Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies
of the data can be obtained free of charge on quoting the depository
number CCDC-1414731 for 1·2DMSO (Fax: +44-1223-336-033;
E-Mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk)
[12] A. L. Hawley, A. Stasch, Eur. J. Inorg. Chem. 2015, 257–270.
[13] a) T. A. Peganova, A. V. Valyaeva, A. M. Kalsin, P. V. Petrovskii,
A. O. Borissova, K. A. Lyssenko, N. A. Ustynyuk, Organometal-
lics 2009, 28, 3021–3028; b) T. A. Peganova, I. S. Sinopalnikova,
A. S. Peregudov, I. V. Fedyanin, A. Demonceau, N. A. Ustynyuk,
A. M. Kalsin, Dalton Trans. 2016, 17030–17041; c) I. S. Sinopal-
nikova, T. A. Peganova, V. V. Novikov, I. V. Fedyanin, O. A.
Filippov, N. V. Belkova, E. S. Shubina, R. Poli, A. M. Kalsin,
Chem. Eur. J. 2017, 23, 15424–15435; d) I. S. Sinopalnikova,
T. A. Peganova, N. V. Belkova, E. Deydier, J. C. Daran, E. S.
Shubina, A. M. Kalsin, R. Poli, Eur. J. Inorg. Chem. 2018, 2285–
2299; e) T. A. Peganova, I. V. Fedyanin, O. A. Filippov, N. V.
Belkova, A. M. Kalsin, Eur. J. Inorg. Chem. 2018, 5098–5107.
[14] a) S. Miyano, M. Nawa, H. Hashimoto, Chem. Lett. 1980, 9, 729–
730; b) S. Miyano, M. Nawa, H. Hashimoto, A. Mori, Bull. Chem.
Soc. Jpn. 1984, 57, 2171–2176.
Acknowledgements
K. A. R. thanks the Deutscher Akademischer Austausch Dienst
(DAAD) for funding of a research fellowship at Philipps-Universität
Marburg within the Ostpartnerschaftsprogramm.
[15] R. Guo, X. Li, J. Wu, W. H. Kwok, J. Chen, M. C. K. Choi,
A. S. C. Chan, Tetrahedron Lett. 2002, 43, 6803–6806.
Keywords: Staudinger reaction; Iminophosphonamide
Z. Anorg. Allg. Chem. 0000, 0–0
4
© 0000 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim