RESEARCH FRONT
1692
M. Krebsz et al.
intense lines are at ,580, 578, 548, 440, 405, 365, 313, and
254 nm) through a quartz window mounted on the vacuum
chamber. Melles Griot interference filters (full width at the
half-height of 10 nm) were used to select a single line of the
mercury lamp.
References
[1] R. M. Paton, Chem. Soc. Rev. 1989, 18, 33. doi:10.1039/
CS9891800033
[2] C. Wentrup, P. Kambouris, Chem. Rev. 1991, 91, 363. doi:10.1021/
CR00003A004
[3] S. Kanemasa, Sci. Synthesis 2004, 19, 17.
IR spectra were recorded by a Bruker IFS 55 Fourier trans-
form infrared (FT-IR) spectrometer equipped with a KBr
beamsplitter and a deuterated triglycine sulphate detector. A
total of 250–1000 scans were accumulated at 1 cmꢁ1 resolution
in the 400–4000 cmꢁ1 spectral window. The Happ-Genzel
apodization function, Mertz phase correction using a phase
resolution of 32 cmꢁ1, and a zero filling factor of 4 were applied.
Absorption UV-visible spectra were recorded with a Varian
Cary3E spectrometer, using a 5-nm minꢁ1 scan rate, 0.333-nm
step size, and 1-nm spectral band width. The data were collected
in the 190–400 nm spectral region.
[4] M. Krebsz, T. Pasinszki, Curr. Org. Chem. 2010, in press.
[5] T. Pasinszki, M. Krebsz, G. Bazso´, G. Tarczay, Chemistry 2009, 15,
6100. doi:10.1002/CHEM.200900408
[6] T. Pasinszki, G. Bazso´, M. Krebsz, G. Tarczay, Phys. Chem. Chem.
Phys. 2009, 11, 9458. doi:10.1039/B913204J
[7] P. Kambouris, M. Plisnier, R. Flammang, J. K. Terlouw, C. Wentrup,
Tetrahedron Lett. 1991, 32, 1487. doi:10.1016/0040-4039(91)
80365-D
[8] N. Harrit, A. Holm, I. R. Dunkin, M. Poliakoff, J. J. Turner, J. Chem.
Soc, Perkin Trans. 2 1987, II, 1227. doi:10.1039/P29870001227
[9] R. Flammang, P. Gerbaux, E. H. Morkved, M. W. Wong, C. Wentrup,
J. Phys. Chem. 1996, 100, 17452. doi:10.1021/JP9618800
[10] P. Gerbaux, Y. V. Haverbeke, R. Flammang, M. W. Wong,
C. Wentrup, J. Phys. Chem. A 1997, 101, 6970. doi:10.1021/
JP971170þ
Emission UV-visible spectra were recorded with an Ocean
Optics HR2000 fibre optic spectrometer. The spectrum accu-
mulation time was 3 s.
Quantum chemical calculations were performed with
the ACES2,[24,25] Gaussian03,[26] and MOLPRO[27] program
packages. Equilibrium geometries, transition structures,
homolytic dissociation energies, harmonic frequencies, and
anharmonic vibrational frequencies within the framework of
second-order vibrational perturbational theory[28,29] were cal-
culated by coupled cluster and density functional methods.
Stability checks of wave functions were performed for all
calculated structures. The connecting lowest-energy paths
between minima were obtained using an intrinsic reaction
coordinate (IRC)[30,31] approach. Owing to the complexity of
the surface, the IRC was also manually checked, by proceeding
along the given reaction coordinate and simultaneously relaxing
all other bond lengths and angles. Unimolecular properties
were calculated at the B3LYP[32,33] and CCSD(T)[34] levels.
Bimolecular reactions were calculated at the MR-AQCC(2,2)//
(U)B3LYP level; geometry optimizations were performed at the
UB3LYP and RB3LYP levels for open-shell singlet and closed-
shell species, respectively, and single-point energy calculations
were done using (U)B3LYP geometries at the MR-AQCC
(2,2)[35] level to obtain the total energies. Total energies of
CH3CNS and CH3CN were calculated at the SR-AQCC//
B3LYP level. Zero-point vibrational energies and thermal
corrections were calculated at the (U)B3LYP level. Three
common correlation consistent one-electron basis sets, cc-
pVTZ, aug-cc-pVTZ, and cc-pCVTZ, were used for all mole-
cules, the latter two only for calculating the geometry and
vibrational frequencies of CH3CNS. Unless noted otherwise,
the results obtained using the cc-pVTZ basis set are presented
in the Discussion section. Test calculations were performed
using the (U)B3LYP/cc-pVTZ geometries of selected test
molecules. Core electrons were kept frozen (fc) in post-HF
calculations, except for the cc-pCVTZ basis set.
[11] Z. Fu, X. Pan, Z. Li, C. Sun, R. Wang, Chem. Phys. Lett. 2006, 430, 13.
doi:10.1016/J.CPLETT.2006.07.103
[12] T. Pasinszki, T. Ka´rpa´ti, N. P. C. Westwood, J. Phys. Chem. A 2001,
105, 6258. doi:10.1021/JP010830E
[13] T. J. Lee, P. R. Taylor, Int. J. Quant. Chem. Symp. 1989, 23, 199.
[14] Zh.-X. Yu, P. Caramella, K. N. Houk, J. Am. Chem. Soc. 2003, 125,
15420. doi:10.1021/JA037325A
[15] E. Goldstein, B. Beno, K. N. Houk, J. Am. Chem. Soc. 1996, 118, 6036.
doi:10.1021/JA9601494
[16] J. Gra¨fenstein, A. M. Hjerpe, E. Kraka, D. Cremer, J. Phys. Chem. A
2000, 104, 1748. doi:10.1021/JP993122Q
[17] G. Orlova, J. D. Goddard, J. Chem. Phys. 2000, 112, 10085.
doi:10.1063/1.481650
[18] T. Pasinszki, B. Hajgato´, B. Havasi, N. P. C. Westwood, Phys. Chem.
Chem. Phys. 2009, 11, 5263. doi:10.1039/B823406J
[19] H. S. Kim, K. Kim, Bull. Korean Chem. Soc. 1992, 13, 520.
[20] G. Herzberg, Molecular Spectra and Molecular Structure III. Electro-
nic Spectra and Electronic Structure of Polyatomic Molecules 1966
(van Nostrand Reinhold: New York, NY).
[21] NIST Atomic Spectra Database Lines Form. Available online at:
October 2010].
[22] B. E. Wurfel, G. C. Pimentel, Chem. Phys. Lett. 1994, 223, 301.
doi:10.1016/0009-2614(94)00461-7
[23] L. M. Weinstock, P. Davies, B. Handelsman, R. Tull, J. Org. Chem.
1967, 32, 2823. doi:10.1021/JO01284A040
[24] ACES II: Mainz-Austin-Budapest version: J. F. Stanton, J. Gauss, J. D.
Watts, P. G. Szalay, R. J. Bartlett with contributions from A. A. Auer,
D. E. Bernholdt, O. Christiansen, M. E. Harding, M. Heckert, O. Heun,
C. Huber, D. Jonsson, J. Juse´lius, W. J. Lauderdale, T. Metzroth,
C. Michauk, D. R. Price, K. Ruud, F. Schiffmann, A. Tajti, M. E.
Varner, J. Va´zquez and the integral packages: MOLECULE (J. Almlo¨f
and P. R. Taylor), PROPS (P. R. Taylor), and ABACUS (T. Helgaker,
H. J. Aa. Jensen, P. Jørgensen, and J. Olsen). See also J. F. Stanton,
J. Gauss, J. D. Watts, W. J. Lauderdale, R. J. Bartlett, Int. J. Quantum
[verified October 2010].
Accessory Publication
[25] J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, R. J. Bartlett, Int.
J. Quantum Chem., Quantum Chem. Symp. 1992, 26, 897.
[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin,
J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li,
J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
The calculated equilibrium structure of CH3CNS, energetics
of the bimolecular reaction routes of CH3CNS, and enlarged
IR spectrum of the photolysis products of 3,4-dimethyl-1,2,5-
thiadiazole are available from the Journal’s website.
Acknowledgements
This work was funded by the Hungarian Scientific Research Fund (grant no.
OTKA K75877).