11050 J. Phys. Chem. A, Vol. 105, No. 49, 2001
Nakano et al.
reported recently by Ingham et al.,15 k2 ) (4.4 ( 0.6) × 10-13
cm3 molecule-1 s-1 in 60-200 Torr of N2 diluent at 295 K. It
appears that previous measurements carried out at low pressures
(<4 Torr of He) do not provide a reliable measure of the kinetics
of the BrO + DMS reaction under atmospheric conditions.
(5) Shon, Z. H.; Davis, D.; Chen, G.; Grodzinsky, G.; Bandy, A.;
Thornton, D.; Sandholm, S.; Bradshaw, J.; Stickel, R.; Chameides, W.; Kok,
G.; Russell, L.; Mauldin, L.; Tanner, D.; Eisele, F. Atoms. EnViron. 2001,
35, 159.
(6) Tyndall, G. S.; Ravishankara, A. R. Int. J. Chem. Kinet. 1991, 23,
483.
(7) Sekusˇak, S.; Piecuch, P.; Bartlett, R. J.; Cory M. G. J. Phys. Chem.
A 2000, 104, 8779.
The kinetic data for the BrO + DMS reaction measured herein
support and extend (to temperatures other than ambient) the
recent findings of Ingham et al.15 The present work taken
together with that of Ingham et al.15 provides compelling
evidence that the values of k2 used in present global atmospheric
models are too low by approximately a factor of 1.8. Ingham
et al.15 used a chemical box model (MOCCA40,41) to assess the
importance of reaction 2 in the atmospheric chemistry of DMS.
The MOCCA model provides a detailed description of the loss
of DMS via reaction with OH, NO3, Cl, Br, BrO, and IO radicals
in the marine boundary layer. Using their value of k2 ) (4.4 (
0.7) × 10-13 cm3 molecule-1 s-1 at 295 K, Ingham et al.15 found
that incorporation of reaction 2 into the MOCCA model lead
to a decrease in [DMS] by approximately a factor of 2 and an
increase in [DMSO] by approximately a factor of 4. It is clear
that reaction with BrO radicals is an important sink for DMS
and an important source of DMSO in marine environments. As
seen in Figure 7, the results from the present work show that
reaction 2 has a negative temperature dependence given by k2
) (1.3 ( 0.1) × 10-14 exp[(1033 ( 265)/T] cm3 molecule-1
s-1. Use of this expression in the MOCCA model would increase
the importance of reaction 2 slightly (by approximately 10%)
over that reported by Ingham et al.15
(8) Cooper, D. J. J. Atoms. Chem. 1996, 25, 97.
(9) Ravishankara, A. R.; Rudich, Y.; Talukdar, R.; Barone, S. B. Philos.
Trans. R. Res. London Ser. B 1997, 352, 171.
(10) Allan, B. J.; McFiggans, G.; Plane, J. M. C.; Coe, H.; McFadyen,
G. G. J. Geophys. Res. 2000, 105, 24191.
(11) Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G.
Nature 1987, 326, 655.
(12) Barnes, I.; Becker, K. H.; Overath, R. D. In Tropospheric Chemistry
of Ozone in the Polar Regions. Global EnVironmental Change; NATO ASI
Series 1; Niki, H., Becker, K. H., Eds.; 1993, I 7, 371.
(13) Jefferson, A.; Nicovich, J. M.; Wine, P. H. J. Phys. Chem. A 1994,
98, 7128.
(14) Wine, P. H.; Nicovich, J. M.; Stickel, R. E.; Zhao, Z.; Shackelford,
C. J.; Kreutter, K. D.; Daykin, E. P.; Wang, S. In Global EnVironmental
Change; NATO ASI Series 1; Niki, H., Becker, K. H., Eds.; 1993, I 7,
385.
(15) Ingham, T.; Bauer, D.; Sander, R.; Crutzen, P. J.; Crowley, J. N.
J. Phys. Chem. A 1999, 103, 7199.
(16) Barnes, I.; Bastian, V.; Becker, K. H.; Overath, R. D. Int. J. Chem.
Kinet. 1991, 23, 579.
(17) Bedjanian, Y.; Poulet, G.; LeBras, G. Int. J. Chem. Kinet. 1996,
28, 383.
(18) O’Keefe, A.; Deacon, D. D. G. ReV. Sci. Instrum. 1988, 59, 2544.
(19) Zalicki, P.; Zare, R. N. J. Chem. Phys. 1995, 102, 2708.
(20) Berden, G.; Peeters, R.; Meijer, G. Int. ReV. Phys. Chem. 2000,
19, 565.
(21) King, M. D.; Dick, E. M.; Simpson, W. R. Atmos. EnViron. 2000,
34, 685.
(22) Tonokura, K.; Marui, S.; Koshi, M. Chem. Phys. Lett. 1999, 313,
771.
Finally, it should be noted that BrO radicals are regenerated
by reaction of Br atoms with ozone and hence reaction 2 will
not decrease the level of BrO radicals in the atmosphere:
(23) Wheeler, N. D.; Newman, S. M.; Orr-Ewing, A. J.; Ashfold, M.
N. R. J. Chem. Soc., Faraday. Trans. 1998, 94, 337.
(24) Yu, T.; Lin, M. C. J. Phys. Chem. 1994, 98, 9697.
(25) Zhu, L.; Johnston, G. J. Phys. Chem. 1995, 99, 15114.
(26) Atkinson, D. B.; Hudgens, J. W. J. Phys. Chem. A 1997, 101, 3901.
(27) Brown, S. S.; Wilson, R. W.; Ravishankara A. R. J. Phys. Chem.
A 2000, 104, 4976.
BrO + DMS f Br + DMSO
Br + O3 f BrO + O2
(28) Brown, S. S.; Ravishankara, A. R.; Stark, H. J. Phys. Chem. A
2000, 104, 7044.
(29) Ninomiya, Y.; Hashimoto, S.; Kawasaki, M.; Wallington, T. J. Int.
J. Chem. Kinet. 2000, 32, 125.
(30) Ninomiya, Y.; Goto, M.; Hashimoto, S.; Kagawa, Y.; Yoshizawa,
K.; Kawasaki, M.; Wallington, T. J.; Hurley, M. D. J. Phys. Chem. A 2000,
104, 7556.
(31) Ninomiya, Y.; Goto, M.; Hashimoto, S.; Kawasaki, M.; Wallington,
T. J. Int. J. Chem. Kinet. 2001, 33, 130.
Ozone is present in the marine boundary layer at a concentration
which is typically 1000 times greater than that of DMS.
Although reaction 2 is an important loss mechanism for DMS
it is not an important loss mechanism for ozone.
(32) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;
Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,
M. J. Chemical Kinetics and Photochemical Data for use in Stratospheric
Modeling, JPL Publication 97-4; Jet Propulsion Laboratory: Pasadena, CA,
1997.
(33) Hearn, C. H.; Turcu, E.; Joens, J. A. Atmos. EnViron. 1990, 24A,
1939.
Acknowledgment. The authors thank Mr. Shinji Nakamichi
for his help with the experiments. This work was supported by
a Grant-in-Aid for the priority research field “Radical Reactions”
from the Ministry of Education, Japan, and a NEDO Interna-
tional Joint Research Grant.
(34) Johnson, R. O.; Perram, G. P.; Roh W. B. J. Chem. Phys. 1996,
104, 7052.
(35) Urbanski, S. P.; Wine, P. H. J. Phys. Chem. A 1999, 103, 10935.
(36) McKee, M. L. J. Phys. Chem. 1993, 97, 10971.
(37) Resende, S. M.; De Almeida, W. B. J. Phys. Chem. A 1997, 101,
9738.
(38) Wilson, C.; Hirst, D. M. J. Chem. Soc., Faraday Trans. 1997, 93,
2831.
(39) Chin, M.; Jacob, D. J.; Gardner, G. M.; Foreman-Fowler, M. S.;
Spiro, P. A.; Savoie, D. L. J. Geophys. Res. 1996, 101, 18667.
(40) Sander, R.; Crutzen, P. J. J. Geophys. Res. 1996 101, 9121.
(41) Vogt, R.; Crutzen, P. Nature 1996, 383, 327.
References and Notes
(1) Cullis, C. F.; Hirschler, M. M. Atoms. EnViron. 1980, 14, 1263.
(2) Andreae, M. O.; Ferek, R. J.; Bermond, F.; Byrd, K. P.; Engstrom,
R. T.; Hardin, S.; Houmere, P. D.; Le Marrec, F.; Raemdonck, H.; Chatfield,
R. B. J. Geophys. Res. 1985, 90, 12891.
(3) Bates, T. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E.
J. Atmos. Chem. 1992, 14, 315.
(4) Kettele, A. J.; Andreae, M. O. J. Geophys. Res. 2000, 105, 2679.