Chemical Science
Page 8 of 9
JournalꢀNameꢀ
ARTICLEꢀ
and crystallographic data in CIF or other electronic format see
DOI: 10.1039/b000000x/
DOI: 10.1039/C4SC03839H
(a) B. A. Arndtsen, R. G. Bergman, T. A. Mobley and T. H. Peterson,
1
Acc. Chem. Res., 1995, 28, 154; (b) A. E. Shilov and G. B. Shul’pin,
Chem. Rev. 1997, 97, 2879; (c) R. H. Crabtree, J. Chem. Soc., Dalton.
Trans., 2001, 2437; (d) J. A. Labinger and J. E. Bercaw Nature, 2002,
4
17, 507; (e) R. G. Bergman, Nature, 2007, 446, 391.
2
(a) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem. Int.
Ed. 2009, 48, 5094; (b) O. Baudoin, Chem. Soc. Rev., 2011, 40, 4902; (c)
L. Ackermann, Chem. Rev., 2011, 111, 1315; (d) C. Liu, H. Zhang, W.
Shi and A. Lei, Chem. Rev., 2011, 111, 1780; (e) P. B. Arockiam, C.
Bruneau and P. H. Dixneuf, Chem. Rev., 2012, 112, 5879.
3
(a) K. Hirano and M. Miura, Chem. Commun., 2012, 48, 10704; (b) X.
Fig.ꢀ 6ꢀ Molecularꢀ structureꢀ ofꢀ complexꢀ 21ꢀ withꢀ thermalꢀ ellipsoidsꢀ atꢀ 30%ꢀ
probabilityꢀlevel.ꢀHydrogenꢀatomsꢀhaveꢀbeenꢀomittedꢀforꢀclarity.ꢀSelectedꢀbondsꢀ Shang and Z.-Q. Liu, Chem. Soc. Rev., 2013, 42, 3253; (c) S. I.
(
2
1
Å)ꢀ andꢀ anglesꢀ (°):ꢀ Ir1-C1ꢀ 2.142(4),ꢀ Ir1-C22ꢀ 2.112(4),ꢀ Ir1-Cl1ꢀ 2.380(1),ꢀ Ir1-P1ꢀ
.2857(9),ꢀ Ir1-P2ꢀ 2.3153(9),ꢀ C1-C22ꢀ 1.441(5),ꢀ Cl1-Ir1-C1ꢀ 163.4(1),ꢀ P1-Ir-P2ꢀ
60.24(3).ꢀ
Kozhushkov and L. Ackermann, Chem. Sci., 2013, 4, 886; (d) S. A.
Girard, T. Knauber and C.-J. Li, Angew. Chem. Int. Ed., 2014, 53, 74.
4
Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. (Eds.: A. de
Meijere, F. Diederich), Wiley-VCH, Weinheim, 2004.
J. Choi, A. H. R. MacArthur, M. Brookhart and A. S. Goldman, Chem.
Rev., 2011, 111, 1761.
Conclusions
5
In conclusion, we have presented the C–H activation reactivity
of cyclohexane-based iridium pincer complexes. The major
difference between these systems and their arene-based
counterparts is the non-innocent character of the pincer ligand,
where both α- and β-hydrogens can be eliminated. This opened
up for an unprecedented reactivity where non-activated Csp3–H
bonds extrude two molecules of dihydrogen in the formation of
a C–C double bond. This process is reversible and upon
pressurizing with H2 the resulting C–C bond can be
hydrogenated to recover the ligand structure; remarkably, this
happens via a net Csp3–Csp3 bond cleavage. Mechanistic studies
indicate that a key step to open up for such reactivity is the
formation of the carbene complex, which, via migratory
insertion or deinsertion into an Ir–C bond is responsible for C–
C bond formation and cleavage. This knowledge will hopefully
enable a catalytic variety of this transformation allowing the
intermolecular formation of double bonds from the coupling of
two non-activated aliphatic carbons.
6
8
7
A. Arunachalampillai, D. Olsson and O. F. Wendt, Dalton Trans., 2009,
626.
A.V. Polukeev, R. Gritcenko, K. J. Jonasson and O. F. Wendt,
Polyhedron, 2014, 84, 63.
M. Kanzelberger, B. Singh, M. Czerw, K. Krogh-Jespersen, A. S.
Goldman, J. Am. Chem. Soc., 2000, 122, 11017.
(a) M. Montag, I. Efremenko, R. Cohen, L. J. W. Shimon, G. Leitus, Y.
8
9
Diskin-Posner, Y. Ben-David, H. Salem, J. M. L. Martin and D. Milstein,
Chem. Eur. J., 2010, 16, 328; (b) A. V. Polukeev, P. V. Petrovskii, A. S.
Peregudov, M. G. Ezernitskaya and A. A. Koridze, Organometallics,
2
1
013, 32, 1000.
0 (a) A. Friedrich, R. Ghosh, R. Kolb, E. Herdtweck and S. Schneider,
Organometallics, 2009, 28, 708; (b) C. Bianchini, E. Farnetti, M.
Graziani, G. Nardin, A. Vacca, F. Zanobini, J. Am. Chem. Soc., 1990,
1
12, 9190.
1
1 (a) H. A. Y. Mohammad, J. C. Grimm, K. Eichele, H.-G. Mack, B.
Speiser, F. Novak, M. G. Quintanilla, W. C. Kaska and H. A. Mayer,
Organometallics, 2002, 21, 5775. (b) А. V. Polukeev, S. A. Kuklin, P. V.
Petrovskii, F. M. Dolgushin, M. G. Ezernitskaya and A. A. Koridze, Russ.
Chem. Bull., Int. Ed., 2010, 59, 745.
Acknowledgements
Financial support from the Swedish Research Council, the Knut
and Alice Wallenberg Foundation and the Crafoord Foundation
is gratefully acknowledged. Computational resources have been
provided by the National Supercomputer Centre in Linköping ,
Sweden.
1
2 (a) M. Yamashita, Y. Moroe, T. Yano and K. Nozaki, Inorg. Chim.
Acta, 2011, 369, 15; (b) M. A. Esteruelas, M. Olivan and A. Velez, Inorg.
Chem., 2013, 52, 5339.
1
3 For migration of Ir on a benzene ring, assisted by metallation of
2
3 2
chelating -CH -N(CH ) group, see A. A. H. van der Zeijden, G. van
Koten, R. Luijk, R. A. Nordemann and A. L. Spek Organometallics,
1988, 7, 1549.
Notes and references
Centre for Analysis and Synthesis, Department of Chemistry, Lund
a
1
4 It should be noted that formation of olefins from saturated carbons
University, PO Box 124, 22100 Lund, Sweden.
b
Division of Theoretical Chemistry & Biology, School of Biotechnology,
takes place during alkane metathesis, but they are not major products
because of thermodynamical constraints. For details, see ref. 18.
KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden.
1
5 (a) J. Campos, M. F. Espada, J. Lopez-Serrano, E. Carmona, Inorg.
†
Electronic Supplementary Information (ESI) available: Experimental
Chem., 2013, 52, 6694; (b) J. Campos, J. Lopez−Serrano, E. Alvarez and
E. Carmona, J. Am. Chem. Soc., 2012, 134, 7165; (c) W. Baratta, M.
Ballico, A. Del Zotto, E. Zangrando and P. Rigo, Chem. Eur. J., 2007, 13,
details, characterization data, cartesian coordinates, additional graphs and
computational details. CCDC 1024127, 1024128 and 1024129. For ESI
6
701; (d) W. Baratta, E. Herdtweck, P. Martinuzzi and P. Rigo,
8
ꢀ|ꢀJ.ꢀName.,ꢀ2012,ꢀ00,ꢀ1-3ꢀ
Thisꢀjournalꢀisꢀ©ꢀTheꢀRoyalꢀSocietyꢀofꢀChemistryꢀ2012ꢀ