Paper
Organic & Biomolecular Chemistry
L. Chen, S. N. Berry, X. Wu, E. N. W. Howe and P. A. Gale, 30 In the case of the PF −
salts, the F NMR spectrum was
19
2
6
Chem, 2020, 6, 61–141.
recorded in a solution containing a known amount of
2,2,2-trifluoroethanol. A delay time of 30 seconds was used
between scans to ensure complete relaxation of the fluorine
nuclei, see: (a) W. He, F. Du, Y. Wu, Y. Wang, X. Liu, H. Liu
and X. Zhao, J. Fluorine Chem., 2006, 127, 809–815;
(b) A. O. Mattes, D. Russell, E. Tishchenko, Y. Liu,
R. H. Cichewicz and S. J. Robinson, Concepts Magn. Reson.,
Part A, 2016, 45, e21422.
3
4
J. Cai and J. L. Sessler, Chem. Soc. Rev., 2014, 43, 6198–6213.
T. M. Beale, M. G. Chudzinski, M. G. Sarwar and
M. S. Taylor, Chem. Soc. Rev., 2013, 42, 1667–1680.
J. Y. C. Lim and P. D. Beer, Chem, 2018, 4, 731–783.
S. A. Boer, E. M. Foyle, C. M. Thomas and N. G. White,
Chem. Soc. Rev., 2019, 48, 2596–2614.
5
6
7
8
9
J. M. Coterón, F. Hacket and H.-J. Schneider, J. Org. Chem.,
1
996, 61, 1429–1435.
H. Miyaji and J. L. Sessler, Angew. Chem., Int. Ed., 2001, 40,
54–157.
31 A peak for the O–H⋯O− hydrogen atom appears to be
located halfway between the two oxygen atoms. In both
structures, this is a special position, so the hydrogen atom
was placed on this position, i.e. exactly halfway between the
two oxygen atoms 1.21 Å from each atom.
1
K. J. Winstanley, A. M. Sayer and D. K. Smith, Org. Biomol.
Chem., 2006, 4, 1760–1767.
1
1
1
1
1
1
1
1
1
1
2
0 J.-I. Kim, H. Juwarker, X. Liu, M. S. Lah and K.-S. Jeong, 32 A. L. Spek, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71,
Chem. Commun., 2010, 46, 764–766. 9–18.
1 M. J. Kim, H.-W. Lee, D. Moon and K.-S. Jeong, Org. Lett., 33 S. F. Mason, J. Chem. Soc., 1958, 674–685.
012, 14, 5042–5045. 34 We acidified a solution of 3·Br with HBr(aq) and then
2
2
2 K. L. Wong, G. L. Law, Y. Y. Yang and W. T. Wong, Adv.
Mater., 2006, 18, 1051–1054.
3 C. H. Chen and F. P. Gabbaï, Angew. Chem., Int. Ed., 2018,
titrated in NaOH(aq) while monitoring the pH of the solu-
tion using a pH meter. At a pH of approximately 5.5, a faint
orange colour began to appear, consistent with deprotona-
tion beginning to occur. By a pH of 6, precipitation
occurred and so we were not able to measure further.
5
7, 521–525.
4 N. Busschaert, C. Caltagirone, W. Van Rossom and
P. A. Gale, Chem. Rev., 2015, 115, 8038–8155.
5 X. Wu, A. M. Gilchrist and P. A. Gale, Chem, 2020, 6, 1296–
35 We were not possible to follow the O–H resonance in any of
the anion binding studies reported herein. Even when no
1
309.
6 N. G. White and M. J. MacLachlan, Chem. Sci., 2015, 6,
245–6249.
D O or MeOD was used in the solvent mixture, these peaks
2
+
were not well-resolved. In the case of 1 in CD
3
CN, we
+
6
could not see this proton resonance at all. In the case of 2
7 C.-F. Ng, H.-F. Chow, D. Kuck and T. C. W. Mak, Cryst.
Growth Des., 2017, 17, 2822–2827.
8 J. W. A. Harrell, M. L. Bergmeyer, P. Y. Zavalij and
J. T. Davis, Chem. Commun., 2010, 46, 3950–3952.
in CD CN, it was visible but very broad and weak and thus
3
not suitable for monitoring quantitative binding.
Qualitatively, it showed a significant movement ∼4 ppm, and
a similar trend to that observed for C–H proton resonances.
9 X.-D. Wang, S. Li, Y.-F. Ao, Q.-Q. Wang, Z.-T. Huang and 36 Bindfit, accessed at supramolecular.org.
D.-X. Wang, Org. Biomol. Chem., 2016, 14, 330–334.
0 T. Saha, S. Dasari, D. Tewari, A. Prathap, K. M. Sureshan,
A. K. Bera, A. Mukherjee and P. Talukdar, J. Am. Chem. Soc.,
37 Sulfate is not appreciably basic, and indeed the conjugate
base of sulfate, HSO4−, appears to protonate 3
−H+
, the
(Fig. S28†). As shown in
2
+
deprotonated form of 3
3
Fig. S25,† addition of sulfate to 2 in CH CN causes a
+
2
014, 136, 14128–14135.
2
1 A. G. Schafer, J. M. Wieting, T. J. Fisher and A. E. Mattson,
Angew. Chem., Int. Ed., 2013, 52, 11321–11324.
2 K. M. Engle, L. Pfeifer, G. W. Pidgeon, G. T. Giuffredi,
purple colour (as opposed to the orange colour that results
from deprotonation), but it is unclear what the cause of
this is.
2
A. L. Thompson, R. S. Paton, J. M. Brown and 38 A. Albert and J. N. Phillips, J. Chem. Soc., 1956, 1294–1304.
V. Gouverneur, Chem. Sci., 2015, 6, 5293–5302. 39 P. Thordarson, Chem. Soc. Rev., 2011, 40, 1305–1323.
3 K. M. Diemoz, S. O. Wilson and A. K. Franz, Chem. – Eur. J., 40 S. Alvarez, Dalton Trans., 2013, 42, 8617–8636.
2
2
2
2
2
2
2
2
016, 22, 18349–18353.
41 M. Szafran, A. Komasa, A. Katrusiak, Z. Dega-Szafran and
P. Barczyński, J. Mol. Struct., 2007, 844–845, 102–114.
4 A. Shokri, J. Schmidt, X.-B. Wang and S. R. Kass, J. Am.
Chem. Soc., 2012, 134, 16944–16947.
5 A. Shokri, X.-B. Wang and S. R. Kass, J. Am. Chem. Soc.,
42 A structure of 2·Cl as its hydrate has been reported. In this
+
structure the O–H group of 2 hydrogen bonds to a water
−
2
013, 135, 9525–9530.
molecule, which then hydrogen bonds to a Cl anion, i.e.
+
6 E. Faggi, R. Porcar, M. Bolte, S. V. Luis, E. García-Verdugo
and I. Alfonso, J. Org. Chem., 2014, 79, 9141–9149.
7 M. Morshedi, S. A. Boer, M. Thomas and N. G. White,
Chem. – Asian J., 2019, 14, 1271–1277.
there are no direct H-bonds from 2 to the anion.
C. Romming and E. Uggerud, Acta Chem. Scand., Ser. B,
1983, 37, 791–795.
43 D. Aragao, J. Aishima, H. Cherukuvada, R. Clarken,
M. Clift, N. P. Cowieson, D. J. Ericsson, C. L. Gee,
S. Macedo, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-
Tunnicliffe, R. Rostan, R. Williamson and T. T. Caradoc-
Davies, J. Synchrotron Radiat., 2018, 25, 885–891.
8 J. P. Saxena, W. H. Stafford and W. L. Stafford, J. Chem.
Soc., 1959, 1579–1587.
9 S. L. Shapiro, K. Weinberg and L. Freedman, J. Am. Chem.
Soc., 1959, 81, 5140–5145.
2802 | Org. Biomol. Chem., 2021, 19, 2794–2803
This journal is © The Royal Society of Chemistry 2021