1098
J. Am. Chem. Soc. 1999, 121, 1098-1099
Total Synthesis of Luzopeptins A-C
Dale L. Boger,* Mark W. Ledeboer, and Masaharu Kume
Department of Chemistry and
The Skaggs Institute of Chemical Biology
The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, California 92037
ReceiVed NoVember 12, 1998
The luzopeptins (1-3, Figure 1) are potent antitumor antibiotics
that were isolated from Actinomadura luzonensis1 and identified
through a single-crystal X-ray structure determination of 1.2 They
constitute the initial members of a growing class of C2-symmetric
cyclic decadepsipeptides which now include the quinoxapeptins
(4-5),3 quinaldopeptin,4 and sandramycin (6)5-7 that bind to DNA
with bisintercalation.6-11 In addition to their potent cytotoxic and
antitumor activity,1,8,12,13 they are potent inhibitors of HIV reverse
transcriptase (RT)7,14 including single and double mutants3
responsible for the emerging clinical resistance to recently
introduced RT inhibitors. Moreover, the cytotoxic potency of the
luzopeptins (A > B . C) and their antiviral potency/HIV RT
inhibition (C > B > A) are reversed, with luzopeptin C exhibiting
suppression of HIV replication in infected MT-4 cells at non-
cytotoxic concentrations,14 and we have observed similar divergent
structure activity relationships with a recent series of sandramycin
analogues.7
Despite their importance as prototypical DNA bisintercalators
with potent biological properties, they have been the subject of
only limited synthetic efforts.15-18 Herein, we report the first total
synthesis of luzopeptins A-C. The luzopeptins and quinoxapep-
tins contain the identical cyclic decadepsipeptide and differ only
in the attached chromophore and in the acyl substituents found
Figure 1.
on the unusual L-(4S)-hydroxy-2,3,4,5-tetrahydropyridazine-3-
carboxylic acid (L-Htp) subunit. Consequently, key elements of
the approach include the late-stage introduction of the chro-
mophore potentially providing access to both the luzopeptins and
quinoxapeptins, the late-stage L-Htp alcohol acylation permitting
the divergent synthesis of the luzopeptins and quinoxapeptins,
symmetrical pentadepsipeptide coupling and macrocyclization of
the 32-membered depsipeptide conducted at the single secondary
amide site, and a convergent assembly of the pentadepsipeptide
with introduction of the hindered and labile ester linkage in the
final coupling reaction under near racemization free conditions.
The convergent assemblage of the key pentadepsipeptide 19
from the tripeptide 17 and protected dipeptide 1818 is summarized
in Scheme 1. The protected N-methyl (3R)-hydroxyvalinol 12 for
incorporation into 17 was derived from 3-methyl-2-buten-1-ol by
Sharpless epoxidation with (+)-L-DIPT providing the known (2S)-
epoxide 7.19 Formation of the carbamate 8 upon reaction with
methyl isocyanate (1.5 equiv, CH2Cl2, 23 °C, 2 h, 94%) followed
by base-catalyzed intramolecular epoxide opening provided the
9 that cleanly rearranged to the more stable cyclic carbamate 10
(>25:1) under the reaction conditions (5.0 equiv of NaH, THF,
25 °C, 24-72 h, 66-85%).20 Protection of the primary alcohol
(1.6 equiv of DHP, 0.06 equiv of PPTs, CH2Cl2, 23 °C, 17 h,
99%), hydrolysis of the cyclic carbamate (4 equiv of KOH, (CH2-
OH)2-H2O, 150 °C, 25 h, 92-94%), and coupling with BOC-
Gly-Sar-OH (13,6 1.05 equiv of EDCI21 and HOAt,21 DMF, 23
°C, 83%) provided 14. Subsequent deprotection of the primary
(1) Konishi, M.; Ohkuma, H.; Sakai, F.; Tsuno, T.; Koshiyama, H.; Naito,
T.; Kawaguchi, H. J. Antibiot. 1981, 34, 148.
(2) Arnold, E.; Clardy, J. J. Am. Chem. Soc. 1981, 103, 1243. Konishi,
M.; Ohkuma, H.; Sakai, F.; Tsuno, T.; Koshiyama, H.; Naito, T.; Kawaguchi,
H. J. Am. Chem. Soc. 1981, 103, 1241.
(3) Lingham, R. B.; Hsu, A. H. M.; O’Brien, J. A.; Sigmund, J. M.;
Sanchez, M.; Gagliardi, M. M.; Heimbuch, B. K.; Genilloud, O.; Martin, I.;
Diez, M. T.; Hirsch, C. F.; Zink, D. L.; Liesch, J. M.; Koch, G. E.; Gartner,
S. E.; Garrity, G. M.; Tsou, N. N.; Salituro, G. M. J. Antibiot. 1996, 49, 253.
(4) Toda, S.; Sugawara, K.; Nishiyama, Y.; Ohbayashi, M.; Ohkusa, N.;
Yamamoto, H.; Konishi, M.; Oki, T. J. Antibiot. 1990, 43, 796.
(5) Matson, J. A.; Bush, J. A. J. Antibiot. 1989, 42, 1763. Matson, J. A.;
Colson, K. L.; Belofsky, G. N.; Bleiberg, B. B. J. Antibiot. 1993, 46, 162.
(6) Total synthesis of sandramycin: Boger, D. L.; Chen, J.-H. J. Am. Chem.
Soc. 1993, 115, 11624. Boger, D. L.; Chen, J.-H.; Saionz, K. W. J. Am. Chem.
Soc. 1996, 118, 1629.
(7) Boger, D. L.; Chen, J.-H.; Saionz, K. W.; Jin, Q. Bioorg. Med. Chem.
1998, 6, 85. Boger, D. L.; Saionz, K. W. Bioorg. Med. Chem. In press.
(8) Huang, C.-H.; Mong, S.; Crooke, S. T. Biochemistry 1980, 19, 5537.
Huang, C.-H.; Prestayko, A. W.; Crooke, S. T. Biochemistry 1982, 21, 3704.
Huang, C.-H.; Mirabelli, C. K.; Mong, S.; Crooke, S. T. Cancer Res. 1983,
43, 2718. Huang, C.-H.; Crooke, S. T. Cancer Res. 1985, 45, 3768.
(9) Fox, K. R.; Davies, H.; Adams, G. R.; Portugal, J.; Waring, M. J. Nucl.
Acids Res. 1988, 16, 2489. Fox, K. R.; Woolley, C. Biochem. Pharmacol.
1990, 39, 941.
(10) Searle, M. S.; Hall, J. G.; Denny, W. A.; Wakelin, L. P. G. Biochem.
J. 1989, 259, 433.
(11) Zhang, X.; Patel, D. J. Biochemistry 1991, 30, 4026. Leroy, J. L.;
Gao, X.; Misra, V.; Gueron, M.; Patel, D. J. Biochemistry 1992, 31, 1407.
(12) Rose, W. C.; Schurig, J. E.; Huftalen, J. B.; Bradner, W. T. Cancer
Res. 1983, 43, 1504. Huang, C.-H.; Crooke, S. T. Anti-cancer Drug Des. 1986,
1, 87.
(13) Boger, D. L.; Chen, J.-H. Bioorg. Med. Chem. Lett. 1997, 7, 919.
(14) Take, Y.; Inouye, Y.; Nakamura, S.; Allaudeen, H. S.; Kubo, A. J.
Antibiot. 1989, 42, 107.
(15) Olsen, R. K.; Apparao, S.; Bhat, K. L. J. Org. Chem. 1986, 51, 3079.
(16) Hughes, P.; Clardy, J. J. Org. Chem. 1989, 54, 3260. Greck, C.;
Bischoff, L.; Genet, J. P. Tetrahedron: Asymmetry 1995, 6, 1989.
(17) Ciufolini, M. A.; Swaminathan, S. Tetrahedron Lett. 1989, 30, 3027.
Ciufolini, M. A.; Xi, N. J. Chem. Soc., Chem. Commun. 1994, 1867. Xi, N.;
Ciufolini, M. A. Tetrahedron Lett. 1995, 36, 6595. Ciufolini, M.; Xi, N. J.
Org. Chem. 1997, 62, 2320. Xi, N.; Alemany, L. B.; Ciufolini, M. A. J. Am.
Chem. Soc. 1998, 120, 80.
(19) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.;
Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
(20) Roush, W. R.; Adam, M. A. J. Org. Chem. 1985, 50, 3752. The
crystallinity of 10 provided the occasion to ensure pure material free of the
isomer 9 as well as any unnatural enantiomer (recrystallization, EtOAc-
hexane) was enlisted in the subsequent steps.
(21) EDCI ) 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochlo-
ride; HOAt ) 1-hydroxy-7-azabenzotriazole; DCC ) 1,3-dicyclohexylcar-
bodiimide.
(18) Boger, D. L.; Schu¨le, G. J. Org. Chem. 1998, 63, 6421.
10.1021/ja983925b CCC: $18.00 © 1999 American Chemical Society
Published on Web 01/22/1999