E. Brunet et al. / Tetrahedron Letters 50 (2009) 5361–5363
5363
4 2 4 15 7 6 2
Figure 4. Idealized model for Zr(PO )(H PO )0.64 (C13H N O P )0.18 (see text).
5D
symmetry.
The solid state phosphorescence lifetime of materials Tb
?7F
and 5D
?7F
emissions thus suggesting a distorted D
0
3
0
4
4
Acknowledgments
1
5
3
+
ꢀc
-
Financial support from the Spanish Ministry of Science and Edu-
cation (MAT2006-00570) and indirect funding from ERCROS-
Farmacia S.A. (Aranjuez, Spain) are gratefully acknowledged.
3
+
ZrP-BTP and Eu
time spans which are shorter than those observed for BTP com-
ꢀ
c-ZrP-BTP was 0.7 and 0.3 ms, respectively,
plexes in acetronitrile solution (2.5 and 1 ms for Tb3 and Eu ,
respectively) thus suggesting that one or more non-radiative path-
ways are contributing in the solid state to the deactivation of the
metal-centered excited state, leading to the shortening of lumines-
cence lifetimes. This can be easily explained by the weak vibronic
coupling that should take place among the lanthanides and the OH
oscillators belonging to the phosphate/phosphonate and/or inter-
stitial water.
+
3+
References and notes
1. Escribano, P.; Julian-Lopez, B.; Planelles-Arago, J.; Cordoncillo, E.; Viana, B.;
Sanchez, C. J. Mater. Chem. 2008, 18, 23–40.
2
3
.
.
Werts, M. H. V. Science Prog. 2005, 88, 101–131.
Brunet, E.; Rodriguez-Ubis, J. C.; Juanes, O. Curr. Chem. Biol. 2007, 1, 11–39.
4. (a) Rodríguez-Ubis, J. C.; Sedano, R.; Barroso, G.; Juanes, O.; Brunet, E. Helv.
Chim. Acta 1997, 80, 372–387; (b) Takalo, H.; Mukkala, V. M.; Merio, L.;
Rodríguez-Ubis, J. C.; Sedano, R.; Juanes, O.; Brunet, E. Helv. Chim. Acta 1997, 80,
Summing up, a new ligand based in the bis-triazolylpyridine
motif with pendant phosphonate groups has been synthesized
372–387; (c) Azèma, J.; Galaup, C.; Picard, C.; Tisnès, P.; Ramos, P.; Juanes, O.;
Rodríguez-Ubis, J. C.; Brunet, E. Tetrahedron 2000, 56, 2673; (d) Brunet, E.;
Juanes, O.; Sedano, R.; Rodríguez-Ubis, J. C. Org. Lett. 2002, 4, 213–216; (e)
Brunet, E.; Juanes, O.; Rodríguez-Blasco, M. A.; Garayalde, D.; Rodríguez-Ubis, J.
C. Tetrahedron Lett. 2005, 46, 7801–7805; (f) Brunet, E.; Juanes, O.; Sedano, R.;
Rodriguez-Ubis, J. C. Tetrahedron Lett. 2007, 48, 1091–1094; (g) Brunet, E.;
Juanes, O.; Rodriguez-Blasco, M. A.; Pereira, S.; Rodriguez-Ubis, J. C. Tetrahedron
Lett. 2007, 48, 1353–1355.
and topotactic exchanged into c-ZrP. This new material has dem-
3+
3+
onstrated coordination abilities with Eu and Tb and interesting
luminescent properties. Additional work is in progress to avoid the
shortcoming of the deleterious influence of the OH oscillators and
to measure the quantum yields of emission of c-ZrP-BTP and re-
lated materials in order to improve the properties of these layered
5.
Brunet, E.; Mata, M. J.; Juanes, O.; Rodríguez-Ubis, J. C. Chem. Mater. 2004, 16,
1517–1522.
hybrid materials for its efficient utilization in optical applications.
6. (a) Orita, A.; Nakano, T.; Lie An, D.; Tanikawa, K.; Wakamatsu, K.; Otera, J. J. Am.
Chem. Soc. 2004, 126, 10389–10396; (b) Takahashi, S.; Kuroyama, Y.;
Sonogashira, K.; Hagihara, N. Synthesis 1980, 8, 627–630.
7.
Spectroscopic data of compound 1: Brown solid; 1H NMR (CDCl
, 300 MHz): d
3
13
3
(
.15 (s, 2H), 7.44 (d, J = 7.5 Hz, 2H), 7.64 (dd, J = 0.9, 7.5 Hz, 1H); C NMR
CDCl , 75.5 MHz): d 77.7, 82.1, 127.1, 136.5, 142.7.
Spectroscopic data of compound 2: Yellow oil; H NMR (CDCl
3
1
8
.
3
, 300 MHz): d 1.32
t
= 7.7 Hz, JHP = 18.6 Hz, 2H), 3.53
(
(
1
dt, J = 7.07 Hz, JHP = 0.44 Hz, 6H), 2.04 (dt, J
dt, J = 7.7 Hz, JHP = 12.2 Hz, 2H), 4.11 (m, 4H); C NMR (CDCl
6.3, (d, JCP = 6.1 Hz), 25.91 (d, JCP = 140.8 Hz), 45.32 (d, J = 1.92 Hz), 61.85 (d,
13
t
3
, 75.5 MHz): d
31
J
CP = 6.4 Hz); P NMR (CDCl
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021.
, 300 MHz): d 1.30
t, J = 7.1 Hz, 12H), 2.47 (dm, J = 18.5 Hz, 4H), 4.10 (m, 8H), 4.71 (dm,
3
, 75.5 MHz): d 26.90.
9
1
.
0. Spectroscopic data of compound 3: Brown oil; 1H NMR (CDCl
3
(
13
J = 12.1 Hz, 4H), 7.85–8.08 (m, 3H), 8.28 (s, 1H); C NMR (CDCl
3
, 75.5 MHz):
d 16.25 (d, JCP = 3.6 Hz), 16.33 (d, JCP = 3.5 Hz), 27.16 (d, JCP = 141.4 Hz), 27.7 (d,
J
J
CP = 141.2 Hz), 44.61 (d,
JCP = 1.9 Hz), 45.31 (d, JCP = 2.1 Hz), 61.89 (d,
CP = 6.6 Hz), 62.16 (d, JCP = 6.6 Hz), 119.17, 122.63, 137.66, 148.26, 149.77;
31
P NMR (CDCl
1. Spectroscopic data of compound BTP: Brown solid; 1H NMR (D
MHz): d 2.24 (dm, J = 18.7 Hz, 4H), 4.52 (m, 4H), 7.94–8.27 (m, 3H), 8.58 (s,
3
, 75.5 MHz): d 25.53.
1
1
2
O–TFA, 300
1
1
(
H); 13C NMR (D
26.61, 138.36, 142.58, 146.95; P NMR (D
: 430.08020 (M+H ), found 430.07884.
2
O–TFA, 75.5 MHz): d 25.91, 27.73, 44.96, 44.99, 123.15,
31
2
O–TFA, 75.5 MHz): d 23.55; HMRS
+
MALDI): m/z calcd for C13
H
18
N
7
O
6
P
2
2. Alberti, G.. In Comprehensive Supramolecular Chemistry; Alberti, G., Bein, T., Eds.;
Pergamon: New York, 1996; Vol. 7, p 151; Clearfield, A.; Costantino, U.. In
Comprehensive Supramolecular Chemistry; Alberti, G., Bein, T., Eds.; Pergamon:
New York, 1996; Vol. 7, p 107.
1
3. Kanarjov, P.; Reedo, V.; Oja Acik, I.; Matisen, L.; Vorobjov, A.; Kiisk, V.; Krunks, M.;
Sildos, I. Phys. Solid State 2008, 50, 1727–1730; Tong, B. H.; Wang, S. J.; Jiao, J.; Ling,
F. R.; Meng, Y. Z.; Wang, B. J. Photochem. Photobiol., A: Chem. 2007, 191, 74–79.
4. Chandler, B. D.; Yu, J. O.; Cramb, D. T.; Shimizu, G. K. H. Chem. Mater. 2007, 19,
1
4467–4473.
Figure 5. Emission and excitation spectrum of the solid
2
c
-ZrP-BTP containing ca.
15. Luminescence spectra were recorded on a Varian spectro-fluorimeter Cary
Eclypse and they are corrected for emission following internal protocols.
0 ions of Tb3 (green) and Eu (red) per 100 Zr atoms. kexc = 300 nm.
+
3+