Paper
NJC
W. Kim, J. Kluwe, R. Kochhar, N. Dhaka, P. M. Costa,
M. A. Nabeshima Pharm, S. K. Ono, D. Reis, A. Rodil, C. R.
Domech, F. Saez-Royuela, C. Scheurich, W. Siow, N. Sivac-
Burina, E. S. Dos Santos Traquino, F. Some, S. Spreckic,
S. Tan, J. Vorobioff, A. Wandera, P. Wu, M. Yakoub, L. Yang,
Y. Yu, N. Zahiragic, C. Zhang, H. Cortez-Pinto and R. Bataller,
Clin. Gastroenterol. Hepatol., 2019, 29, 30073.
4. Conclusions
In this work, the integration of fluorophores and complexing
agents reduces the influencing factors of multimodal imaging
agent design, which strongly promotes the development of PET-FL
multimodal imaging agents. The bifunctional complexing agent
with AIE characteristics designed in this paper has a wider range
of labelling pH values and milder labelling conditions than
HBED-CC and is suitable for the labelling of sensitive peptides
or antibodies. In addition, 68Ga3+ provides a simple, rapid
radiolabelling method, which is suitable for use in a convenient
lyophilized kit formulation. In summary, this work designed an
AIE-based PET liver function imaging agent. [natGa] 5 can form
nanoscale micelles in DMSO/H2O = 1/99. These nanoaggregates
have high emissivity and exhibit a typical AIE effect. Fluorescence
imaging experiments and radioactivity uptake experiments showed
that Kupffer cells had high uptake of [nat/68Ga] 5, while HepG2 cells
had lower uptake of [nat/68Ga] 5. [nat/68Ga] 5 has simple labelling
conditions, high stability in vivo, and enters and accumulates in the
liver through phagocytosis by Kupffer cells after intravenous
injection into rats. Biodistribution and small animal PET/CT
studies showed that [68Ga] 5 shows a high uptake in the liver
after intravenous injection. Therefore, PET imaging of [68Ga] 5
can be used to evaluate liver function, locate liver lesions, and
then guide fluorescent removal of the lesions, which is important
for the clinical diagnosis, treatment and postoperative evaluation of
liver disease. Based on this work, PET probes with red AIE
characteristics that target different diseases and complex radio-
active metals are being synthesized in our laboratory to enhance
in vivo PET and fluorescence imaging as well as radioactive
targeted therapy.
3 P. Schmeltzer and K. E. Sherman, Dig. Dis. Sci., 2010, 55,
3328.
4 S. P. Georgiadou, K. Zachou, C. Liaskos, S. Gabeta, E. I.
Rigopoulou and G. N. Dalekos, Liver Int., 2009, 29, 434.
5 J. Zhou, Z. Wang, S. J. Qiu, X. W. Huang, J. Sun, W. Gu and
J. Fan, J. Cancer Res. Clin. Oncol., 2010, 136, 1453.
6 J. Belghiti and D. Fuks, Liver Cancer, 2012, 1, 71.
7 K. Hasegawa, N. Kokudo and M. Makuuchi, Saudi. Med. J.,
2007, 28, 1171.
8 P. Bharti, D. Mittal and R. Ananthasivan, Ultrason Imaging,
2017, 39, 33.
9 T. Tajima, K. Yoshimitsu, H. Irie, A. Nishie, M. Hirakawa,
K. Ishigami, Y. Ushijima, D. Okamoto and H. Honda, Acta
Radiol., 2009, 50, 743.
10 D. R. Martin and R. C. Semelka, Semin Ultrasound CT MR,
2005, 26, 116.
11 D. R. Vera, K. A. Krohn, R. C. Stadalnik and P. O. Scheibe,
J. Nucl. Med., 1984, 25, 779.
12 R. Haubner, A. M. Schmid, A. Maurer, C. Rangger, L. G.
Roig, B. J. Pichler and I. J. Virgolini, Mol. Imaging Biol., 2017,
19, 723.
13 R. Haubner, D. R. Vera, S. Farshchi-Heydari, A. Helbok,
C. Rangger, D. Putzer and I. J. Virgolini, Eur. J. Nucl. Med.
Mol. Imaging, 2013, 40, 1245–1255.
14 W. de Graaf, R. J. Bennink, R. Vetelainen and T. M. van
Gulik, J. Nucl. Med., 2010, 51, 742–752.
15 Y. Chen, M. Li, Y. Hong, J. W. Lam, Q. Zheng and B. Z. Tang,
ACS Appl. Mater. Interfaces, 2014, 6, 10783–10791.
Conflicts of interest
There are no conflicts to declare.
´
´
`
16 E. Ranyuk, R. Lebel, Y. Berube-Lauziere, K. Klarskov,
´
R. Lecomte, J. E. van Lier and B. Guerin, Bioconjugate Chem.,
2013, 24, 1624–1633.
Acknowledgements
This research was supported by the National Natural Science
Foundation of China (81701753) and Scientific Research Common
Program of Beijing Municipal Commission of Education
(KM201810025021). We thank Professor Kung Hank F., Professor
Zhu Lin and all members of their team. We also acknowledge Core
Facility Center of Capital Medical University and Capital Medical
University Beijing Anzhen Hospital PET Center.
17 A. Louie, Chem. Rev., 2010, 110, 3146–3195.
18 D. Patel, A. Kell, B. Simard, B. Xiang, H. Y. Lin and G. Tian,
Biomaterials, 2011, 32, 1167–1176.
19 L. Sun, J. Ding, W. Xing, Y. Gai, J. Sheng and D. Zeng,
Bioconjugate Chem., 2016, 27, 1200.
¨
20 T. K. Forster and K. Ein, Z. Phys. Chem., 1954, 275.
21 L. Perk, G. Visser, M. Budde, M. Vosjan, P. Jurek, G. Kiefer
and G. van Dongen, Facile radiolabeling of monoclonal anti-
bodies and other proteins with zirconium-89 or gallium-68 for
PET imaging using p-isothiocyanatobenzyl-desferrioxamine,
Nature Publishing Group, 2008.
22 J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam and B. Z. Tang,
Chem. Rev., 2015, 115, 11718–11940.
23 X. Li, M. Jiang, J. W. Y. Lam, B. Z. Tang and J. Y. Qu, J. Am.
Chem. Soc., 2017, 139, 17022.
Notes and references
1 T. Muller, S. Mehrle, A. Schieck, U. Haberkorn, S. Urban and
W. Mier, Mol. Pharmaceutics, 2013, 10, 2230.
2 N. D. Shah, M. Ventura-Cots, J. G. Abraldes, M. Alboraie,
A. Alfadhli, J. Argemi, E. Badia-Aranda, E. A. Soler, A. S. T.
Barritt, F. Bessone, M. Biryukova, F. J. Carrilho, M. C.
Fernandez, Z. D. Guiridi, M. El Kassas, T. Eng-Kiong,
A. Farias, J. George, W. Gui, P. Harichander-Thurairajah,
J. C. Hsiang, A. Husic-Selimovic, V. Isakov, M. Karoney,
24 P. Zhang, Z. Zhao, C. Li, H. Su, Y. Wu, R. T. K. Kwok,
J. W. Y. Lam, P. Gong, L. Cai and B. Z. Tang, Anal. Chem.,
2018, 90, 1063.
16312 | New J. Chem., 2019, 43, 16305--16313 This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019