Inorganic Chemistry
Article
explicit water molecules, together leads to a smaller barrier and
an enhanced rate of reaction. This indicates that the bond
dissociation energy of the Fe−O bond should decrease. A
theoretical study on a related FeIII(O) system by Borovik et al.
confirms that the bond dissociation energy of the Fe−O bond
decreases upon the inclusion of hydrogen bonds from solvent
water.26 Their study further supports the notion that the Fe−O
bond length increases upon the inclusion of explicit water
molecules. They have also shown that the increase in bond
length is associated with a decrease in the percentage of
covalent character of the Fe−O bond. This suggests that the
ionic character of the Fe−O bond in the transition state should
be greater as the Fe−O bond becomes distended. This
elongation is 0.12 Å in the structure without consideration of
explicit water. The greater ionic character of the Fe−O bond
explains the stronger hydrogen bonding with water in the
transition state relative to that of the reactant.
ACKNOWLEDGMENTS
■
S.S.G. acknowledges DST, New Delhi (Grant EMR/2014/
000106) for funding. M.P.H. acknowledges NIH Grant
GM077387 and NSF Grant CHE1126268 for support. K.K.S.,
M.K.T., M.G., and C.P. acknowledge CSIR (Delhi) for their
fellowships. B.B.D. also acknowledges CSIR for his SRA
position. S.S.G. and M.G. thank Professor T. J. Collins for
hosting M.G. at Carnegie Mellon University.
REFERENCES
■
(1) (a) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L. Chem. Rev.
2004, 104, 939. (b) Que, L.; Tolman, W. B. Nature 2008, 455, 333.
(2) (a) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104,
3947. (b) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932.
(c) Rittle, J.; Green, M. T. Science 2010, 330, 933. (d) Denisov, I. G.;
Makris, T. M.; Sligar, S. G.; Schlichting, I. Chem. Rev. 2005, 105, 2253.
(e) Groves, J. T. J. Inorg. Biochem. 2006, 100, 434.
(3) (a) Krebs, C.; Fujimori, D. G.; Walsh, C. T.; Bollinger, J. M. Acc.
To understand the differential stabilization of water-bound
reactants and transition states in more detail, we looked at the
Mulliken population analysis27 of all species involved in the
RDS (Table SI 8, Supporting Information). The oxo atom in
Fe−O in the transition state having a greater negative charge
than in the reactant indicates the possibility of a better
electrostatic interaction (i.e., stronger hydrogen bond) with
water in the transition state compared to that with the reactant.
Consequently, the barrier decreases with an increasing number
of hydrogen bonds, thereby providing an explanation for the
effect of microsolvation on the activity of the FeV(O) system.
Chem. Res. 2007, 40, 484. (b) Xue, G.; Wang, D.; De Hont, R.; Fiedler,
A. T.; Shan, X.; Munck, E.; Que, L. Proc. Natl. Acad. Sci. U.S.A. 2007,
̈
104, 20713.
(4) (a) Chakrabarty, S.; Austin, R. N.; Deng, D.; Groves, J. T.;
Lipscomb, J. D. J. Am. Chem. Soc. 2007, 129, 3514. (b) Ferraro, D. J.;
Gakhar, L.; Ramaswamy, S. Biochem. Biophys. Res. Commun. 2005, 338,
175.
(5) (a) McDonald, A. R.; Que, L. Coord. Chem. Rev. 2013, 257, 414.
(b) Nam, W.; Lee, Y.-M.; Fukuzumi, S. Acc. Chem. Res. 2014, 47, 1146.
(c) Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee, Y.-M.;
Nam, W. Nat. Chem. 2010, 2, 756. (d) Que, L. Acc. Chem. Res. 2007,
40, 493. (e) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.;
Bukowski, M. R.; Stubna, A.; Munck, E.; Nam, W.; Que, L. Science
̈
2003, 299, 1037. (f) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.;
CONCLUSIONS
■
Song, W. J.; Stubna, A.; Kim, J.; Munck, E.; Nam, W.; Que, L. J. Am.
̈
Chem. Soc. 2004, 126, 472.
In summary, we have demonstrated for the first time the
formation of an FeV(O) complex in H2O/CH3CN mixtures.
This complex was synthesized by the reaction of biuret-
modified Fe−TAML (1) and NaOCl in H2O/CH3CN mixtures
with up to 90% water. The stability of the FeV(O) complex
decreases with increasing water content. This complex is
reasonably stable, allowing for studies on the rate of oxidation
of C−H bonds. We show that for toluene oxidation in 70:30
H2O/CH3CN mixtures, the rate of toluene oxidation increases
60-fold. The increase in activity for FeV(O) upon the addition
of water is due to the preferential stabilization of the transition
state by water during the C−H abstraction process. We believe
that this study will help to elucidate the role of water molecules
in the active site of Fe-based enzymes.
(6) (a) de Oliveira, F. T.; Chanda, A.; Banerjee, D.; Shan, X.;
Mondal, S.; Que, L.; Bominaar, E. L.; Munck, E.; Collins, T. J. Science
̈
2007, 315, 835. (b) Lyakin, O. Y.; Bryliakov, K. P.; Britovsek, G. J. P.;
Talsi, E. P. J. Am. Chem. Soc. 2009, 131, 10798. (c) McDonald, A. R.;
Que, L. Nat. Chem. 2011, 3, 761. (d) Prat, I.; Mathieson, J. S.; Guell,
̈
M.; Ribas, X.; Luis, J. M.; Cronin, L.; Costas, M. Nat. Chem. 2011, 3,
788.
(7) Panda, C.; Ghosh, M.; Panda, T.; Banerjee, R.; Sen Gupta, S.
Chem. Commun. (Cambridge, U.K.) 2011, 47, 8016.
(8) Ghosh, M.; Singh, K. K.; Panda, C.; Weitz, A.; Hendrich, M. P.;
Collins, T. J.; Dhar, B. B.; Sen Gupta, S. J. Am. Chem. Soc. 2014, 136,
9524.
(9) Wang, Y.; Chen, H.; Makino, M.; Shiro, Y.; Nagano, S.; Asamizu,
S.; Onaka, H.; Shaik, S. J. Am. Chem. Soc. 2009, 131, 6748.
(10) Chanda, A.; Shan, X.; Chakrabarti, M.; Ellis, W. C.; Popescu, D.
L.; de Oliveira, F. T.; Wang, D.; Que, L.; Collins, T. J.; Munck, E.;
̈
Bominaar, E. L. Inorg. Chem. 2008, 47, 3669.
ASSOCIATED CONTENT
■
(11) Golombek, A. P.; Hendrich, M. P. J. Magn. Reson. 2003, 165, 33.
(12) Kundu, S.; Thompson, J. V. K.; Ryabov, A. D.; Collins, T. J. J.
Am. Chem. Soc. 2011, 133, 18546.
S
* Supporting Information
HR-MS spectra, GC-MS traces, kinetic traces, UV−vis spectral
kinetics, KIEs, optimized reactant structures, DFT data, and xyz
coordinates for all stationary points of the optimized structures.
This material is available free of charge via the Internet at
(13) (a) Perdew, J. P.; Chevary, S. H.; Vosko, K. A.; Jackson, K. A.;
Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.
(b) Perdew, J. P.; Chevary, S. H.; Vosko, K. A.; Jackson, K. A.;
Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978.
(c) Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533.
(d) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664. (e) Becke, A.
D. J. Chem. Phys. 1993, 98, 5648. (f) Lee, C.; Yang, W.; Parr, R. G.
Phys. Rev. B 1988, 37, 785. (g) Roothan, C. C. J. Rev. Mod. Phys. 1960,
36 (2), 179. (h) McWeeny, R.; Dierksen, G. J. Chem. Phys. 1968, 49,
4852. (i) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1954, 22, 571.
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
AUTHOR INFORMATION
■
Corresponding Author
2590 2747.
Notes
The authors declare no competing financial interest.
G
Inorg. Chem. XXXX, XXX, XXX−XXX