Page 3 of 5
Journal of the American Chemical Society
ASSOCIATED CONTENT
base are applied in a thermodynamic analysis to calcu-
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
late the X–H BDE. This strategy can not be applied
with accuracy to 2 because the conjugate base is not ac-
cessible. Consequently, to garner insight into the magni-
Supporting Information Available: Experimental details
and characterization data including CIF files. This material
is available free of charge via the Internet at
http://pubs.acs.org.
tude of the Se–H effective BDE, reaction of 2 with the
17
2
,4,6-tri-tert-butylphenoxy radical was assayed.
The
reaction efficiently resulted in conversion of 2 to 1 and
,4,6-tri-tert-butylphenol in high yields, Scheme 2.
These results lead to the conclusion that the effective
AUTHOR INFORMATION
2
Corresponding Author
1
8
Se–H
Ni(Me
bond
[12]aneN
dissociation
enthalpy
of
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
[
4
4
)SeH](PF ) must be intermediate be-
6
ACKNOWLEDGMENT
tween those of DHA (78 kcal/mol) and 2,4,6-tri-tert-
1
9
Joliene Trujillo is acknowledged for her initial synthesis of
butylphenol (82.3 kcal/mol), i.e. the Se–H effective
BDE is 80(2) kcal/mol. By comparison, the Se–H BDE
7
{
Ni(Me
4
[12]aneN
4
)CO}OTf. We thank the National Sci-
2
0
ence Foundation (CHE-1112035) for support of this work
and for funding for the X-ray diffractometer through a
CRIF Award (CHE-1048367).
for PhSe–H is estimated at 76-80 kcal/mol. The simi-
larity of this measurement to the value determined for 2
is striking as it points to similar stabilization energies of
+
the PhSe and [Ni(Me
4
[12]aneN
4
)Se] fragments.
REFERENCES
Scheme 2
(
1) (a) Rauchfuss, T. B. Inorg. Chem. 2004, 43, 14; (b) Mealli, C.;
+
O•
H
N
Ienco, A.; Poduska, A.; Hoffmann, R. Angew. Chem. Int. Ed. 2008,
47, 2864; (c) Hu, Y.; Chen, J. F.; Chen, W. M.; Li, X. L. Adv. Funct.
Mat. 2004, 14, 383; (d) Moloto, N.; Moloto, M. J.; Coville, N. J.; Ray,
S. S. J. Crystal Growth 2011, 324, 41.
(2) Hieber, W.; Gruber, J. Z. Anorg. Allgem.Chem. 1958, 296, 91.
(3) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y.
Chem. Rev. 2007, 107, 4273.
Se
But
But
N
+
Ni
N
N
But
2
(4) (a) Kieber-Emmons, M. T.; Riordan, C. G. Acc. Chem. Res.
2
007, 40, 618; (b) Kieber-Emmons, M. T.; Annaraj, J.; Seo, M. S.;
Heuvelen, K. M. V.; Tosha, T.; Kitagawa, T.; Brunold, T. C.; Nam,
W.; Riordan, C. G. J. Am. Chem. Soc. 2006, 128, 14230; (c) Fujita,
K.; Schenker, R.; Gu, W.; Brunold, T. C.; Cramer, S. P.; Riordan, C.
G. Inorg. Chem. 2004, 44, 3324; (d) Mandimutsira, B. S.; Yamarik, J.
L.; Brunold, T. C.; Gu, W.; Cramer, S. P.; Riordan, C. G. J. Am.
Chem. Soc. 2001, 123, 9194; (e) Kieber-Emmons, M. T.; Schenker,
R.; Yap, G. P. A.; Brunold, T. C.; Riordan, C. G. Angew. Chem. Int.
Ed. 2004, 43, 6716.
2
+
+
OH
N
N
Ni
N
But
But
N
Se
Se
N
0.5
Ni
N
(
5) (a) Cho, J.; Heuvelen, K. M. V.; Yap, G. P. A.; Brunold, T. C.;
N
N
Riordan, C. G. Inorg. Chem. 2008, 47, 3913; (b) Kieber-Emmons, M.
T.; Heuvelen, K. M. V.; Brunold, T. C.; Riordan, C. G. J. Am. Chem.
Soc. 2009, 131, 440.
But
1
(6) K. Matsumoto, H. S. J. Organomet. Chem. 2004, 689, 4564.
(7) Trujillo, J., Master's Thesis, University of Delaware, 2010.
+
Electrochemically generated [Ni(Me
4
[12]aneN
4
)CO] has been re-
In summary, the diselenido dinickel(II) complex pre-
pared in high yield via the reaction of its nickel(I) pre-
cursor and elemental selenium features a symmetrically
ported. See, Mejeritskaia, E.; Luo, F.; Kelly, C. A.; Koch, B.;
Gundlach, E. M.; Blinn, E. L. Inorg. Chim. Acta 1996, 246, 295.
tBu
(
8) PhTt = phenyl(tris((tert-butylthio)methyl)borate). Huang, Y.;
Yap, G. P. A.; Riordan, C. G. unpublished results.
(9) Yao, S. L.; Xiong, Y.; Zhang, X. H.; Schlangen, M.; Schwarz,
H.; Milsmann, C.; Driess, M. Angew. Chem. Int. Ed. 2009, 48, 4551.
2
2
2
bound µ-η :η –Se ligand. The paramagnetic compound
oxidizes the C–H bonds of DHA and CHD yielding the
aromatic organic products and the hydroselenide, 2. The
hydroselenide reacts cleanly with a phenoxy radical in a
presumed proton-coupled electron transfer (PCET) pro-
cess regenerating 1 and the phenol. The proclivity of
these two reactions provides a means to bracket the Se–
H effective BDE as 80(2) kcal/mol. Future efforts in-
clude mechanistic studies to further elucidate the details
of the C–H activation process and exploiting this ap-
proach to incorporate selenium into the organic sub-
strates, e.g. Se insertion into C–H bonds to create C–Se–
H functionality adding molecular complexity via metal-
promoted elemental selenium activation.
(
2 2
10) Ni E (E = S, Se, Te) cores with "weak bonding" between the
chalcogenide ligands, i.e. E–E distances longer than single bonds and
shorter than non-bonding distances, have been reported. See for ex-
ample, Sitzmann, H.; Saurenz, D.; Wolmershauser, G.; Klein, A.;
Boese, R. Organometallics 2001, 20, 700.
(
11) Bordwell, F. G.; Cheng, J. P.; Ji, G. Z.; Satish, A. V.; Zhang,
X. M. J. Am. Chem. Soc. 1991, 113, 9790.
12) Addison, A. W.; Rao, T. N.; Reedijk, J.; Vanrijn J; Verschoor,
(
G. C. J. Chem. Soc. Dalton Trans. 1984, 1349.
(13) Fenske, D.; Krautscheid, H.; Muller, M. Angew. Chem., Int.
Edit. Engl. 1992, 31, 321.
(
14) Harvey, P. D.; Eichhofer, A.; Fenske, D. J. Chem. Soc., Dal-
ton Trans. 1998, 3901.
15) Nakamoto, K. Infrared and Raman Spectra of Inorganic and
Coordination Compounds; 5th ed.; John Wiley & Sons, Inc.: New
(
ACS Paragon Plus Environment