V.V. Jouiko6, D.S. Fattakho6a / Journal of Organometallic Chemistry 613 (2000) 220–230
229
w(CꢂO) s 1625 cm−1, w(C–H) m 715 cm−1. NMR (100
MHz, CDCl3, TMS), l ppm: 7.6 (d 2H), 7.22 (m 3H),
5.95 (broad s 1H), 3.32 (m 1H, J=4.06 Hz), 2.8 (m 1H,
J=3.99 Hz), 2.2 (m 2H), 1.96–1.85 (m 2H), 1.76 (s
3H), 1.6–1.3 (m 4H). Mass, m/e (%): 297 (M+, 3), 238
(30), 236 (16), 157 (20), 140 (22), 129 (4), 98 (90), 81
(100), 60 (48).
[7] M. Ryan, J. Yau, M. Hack, J. Electrochem. Soc. 144 (1997)
1952.
[8] V.Z. Latypova, V.V. Zhouikov, Y.M. Kargin, M.Y. Postnikova,
E.G. Kataev, Zh. Obsch. Khim. 56 (1986) 822.
[9] V. Jouikov, V. Ivkov, D. Fattahova, Tetrahedron Lett. 34 (1993)
6045.
[10] V. Jouikov, M. Postnikova, Electrochim. Acta 40 (1995) 803.
[11] V.Z. Latypova, Y.M. Kargin, V.V. Zhouikov, G.A. Tchmutova,
Zh. Obsch. Khim. 55 (1985) 2050.
1-Phenylseleno-2-acetamidohexane, 3b. M.p. 73°C.
C14H21NOSe. Anal. Calc.: C 56.19, H 7.02. Found: C
56.21; H 6.95%. IR: w(N–H) s 3300 cm−1; w(CꢂO) s
1625 cm−1, w(C–H) s 725 cm−1. NMR (100 MHz,
CDCl3, TMS), l ppm: 7.6 (d 2H), 7.2 (m 3H), 6.6 (d
1H), 3.98 (m 1H, J=4.01 Hz), 2.98 (d 2H, J=4.0 Hz),
1.75 (s 3H), 1.6–1.3 (m 6H), 1.12 (t 3H). Mass, m/e
(%): 299 (M+, 4), 240 (18), 238 (9), 197 (4), 157 (12),
142 (70), 100 (20), 86 (100).
1-Phenylseleno-2-acetamidoheptane, 3c. M.p. 81°C.
C15H23NOSe. Anal. Calc.: C 57.51; H 7.35. Found: C
57.56; H 7.28%. IR: w(N–H) s 3300 cm−1; w(CꢂO) s
1625 cm−1, w(C–H) s 725 cm−1. NMR (100 MHz,
CDCl3, TMS), l ppm: 7.6 (d 2H), 7.22 (m 3H), 6.1 (d
1H), 3.93 (m 1H, J=4.0 Hz), 2.8 (d 2H, J=3.98 Hz),
1.9 (s 3H), 1.72–1.56 (m 8H), 1.2 (t 3H). Mass, m/e
(%): 313 (M+, 4), 254 (14), 189 (4), 172 (6), 156 (64),
142 (10), 114 (16), 100 (100), 91 (22).
3d and 3e were prepared by reaction of PhSeH with
3-chloropropionic acid and ethyl ether of 2-chloroacetic
acid, respectively, according to Ref. [60].
Analytical grade acetonitrile was additionally
purified according to [61] and kept over molecular
sieves 4A. Et4NBF4 was obtained by neutralization of
40% aqueous solution of Et4NOH with 7.8 M HBF4
then recrystallized from EtOH, dried and kept over
P2O5.
[12] R. Seeber, A. Cinquantini, P. Zanello, G. Mazzocchin, J. Elec-
troanal. Chem. 88 (1978) 137.
[13] V.V. Jouikov, PhD Thesis, Kazan, KICT, 1985, p. 210.
[14] V.Z. Latypova, Y.M. Kargin, N.M. Khusaenov, Y.V. Rydvan-
skii, O.G. Yakovleva, L.M. Kataeva, E.G. Kataev, Zh. Obsch.
Khim. 49 (1979) 1801.
[15] R. Muller, L. Lamberts, M. Evers, J. Electroanal. Chem. 417
(1996) 35.
[16] V.V. Jouikov, Topics Curr. Electrochem. 4 (1997) 1.
[17] O.G. Yakovleva, PhD Thesis, Kazan, KICT, 1981, p. 147.
[18] Y.M. Kargin, V.V. Zhouikov, Y.G. Bydnikova, D.S. Fat-
takhova, Sov. Electrochem. (Elektrokhimia) 28 (1992) 498.
[19] A.P. Tomilov, Y.M. Kargin, I.N. Tchernikh, Electrochemistry of
Organo-Element Compounds, Nauka, Moscow, 1986, p. 275.
[20] N.N. Vturina, G.A. Tchmutova, Zh. Obsch. Khim. 48 (1978)
2564.
[21] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, The
Chemical Rubber Co., Cleveland, OH, 75th ed., 1994, p. 951.
[22] V. Jouikov, V. Ivkov, Electrochim. Acta 40 (1995) 1617.
[23] V. Jouikov, J. Electroanal. Chem. 398 (1995) 459.
[24] L. Engman, J. Persson, C. Anderson, M. Berglund, J. Chem.
Soc. Perkin Trans. 2 8 (1992) 1309.
[25] B.E. Cooper, W.J. Owen, J. Organomet. Chem. 29 (1971) 33.
[26] J.I. Yoshida, T. Maekawa, T. Murata, S.I. Matsunaga, S. Isoe,
J. Am. Chem. Soc. 112 (1990) 1962.
[27] J.I. Yoshida, T. Murata, S. Isoe, J. Organomet. Chem. 345
(1988) 2327.
[28] E. Block, A. Yencha, M. Aslam, V. Eswarakrishnan, J. Luo, A.
Sano, J. Am. Chem. Soc. 110 (1988) 4748.
[29] E. Block, M. Aslam, Tetrahedron Lett. 44 (1988) 281.
[30] V. Jouikov, D. Fattahova, Electrochim. Acta 43 (1998) 1811.
[31] Y.M. Kargin, V.Z. Latypova, in: A.P. Tomilov (Ed.), Itogi
nauki i tekhniki VINITI AN SSSR, vol. 17, Nauka, Moscow,
1980, p. 210.
[32] J.S. Jaworski, M.K. Kalinowski, in: R.I. Zalewski, T.M.
Krygowski, J. Shorter (Eds.), Similarity Models in Organic
Chemistry, Biochemistry and Related Fields, Elsevier, Amster-
dam, 1991, p. 387.
[33] Y.M. Kargin, V.Z. Latypova, O.G. Yakovleva, Zh. Obsch.
Khim. 50 (1980) 2777.
Acknowledgements
The authors are grateful to Professor J. Fossey
(Ecole Polytechnique, Orsay) for ab initio calculations
and stimulating discussions.
[34] MOPAC, Revision 6.0; F.J.Seiler Res. Lab., USAF Academy,
Colorado Springs, CO, 1993.
[35] J.J.P. Stewart, J. Comput. Chem. 10 (1989) 209.
[36] GAUSSIAN 92, Revision A, Gaussian, Inc., Pittsburgh, PA, 1992.
[37] M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gor-
don, D.J. DeFrees, J.A. Pople, J. Chem. Phys. 77 (1982) 3654.
[38] V.I. Minkin, R.M. Minaev, I.A. Yudilevich, M.E. Kletskii, Zh.
Org. Khim. 21 (1985) 926.
[39] V.F. Traven, B.I. Stepanov, Usp. Khim. (Rus. Chem. Rev) 53
(1984) 897.
[40] V.I. Vovna, F.I. Vilesov Usp. Foton. Leningrad LGU (1975)
3149.
References
[1] G. Cauquis, M. Maurey-Mey, Bull. Soc. Chim. Fr. 11 (1973)
291.
[2] B. Dakova, A. Walcarius, L. Lamberts, M. Evers, Electrochim.
Acta 35 (1990) 1855.
[3] B. Dakova, A. Walcarius, L. Lamberts, M. Evers, Electrochim.
Acta 37 (1992) 1453.
[4] B. Dakova, J.M. Kauffmann, M. Evers, L. Lamberts, G.J.
Patriarche, Electrochim. Acta 35 (1990) 1133.
[5] B. Dakova, L. Lamberts, M. Evers, Electrochim. Acta 39 (1994)
501.
[41] S. Elbel, H. Bergmann, W. Ensslin, J. Chem. Soc. Faraday
Trans. II. 70 (1974) 555.
[42] M.D. Ryan, D.D. Swanson, S.R. Glass, G.S. Wilson, J. Phys.
Chem. 85 (1981) 1069.
[6] S. Ogawa, T. Kikuchi, A. Sasaki, S.I. Chida, R. Sato, Tetrahe-
dron Lett. 35 (1994) 5469.
[43] W. Musker, T. Wolford, J. Am. Chem. Soc. 98 (1976) 3055.