Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC10520J
COMMUNICATION
ChemComm
Hetterscheid and J. N. H. Reek, Chem. Commun., 2011, 47
2712–2714.
(a) J. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L.
Rheingold, R. H. Crabtree and G. W. Brudvig, Science, 1999,
283, 1524–1527; (b) P. Kurz, G. Berggren, M. F. Anderlund
and S. Styring, Dalton Trans., 2007, 4258–4261.
,
photochemical water oxidation. Further, the TON reported through
photochemical WO is superior to many other molecular iridium
catalysts at neutral pH.1c-d,11
4
5
6
Further to identify and confirm the proposed high-valent
Ir(IV)/Ir(V) species, XPS analyses (X-ray photoelectron spectroscopy)
has been performed (Fig. S17, ESI†). After 15 min of LED irradiation
the solution containing catalysts, PS and SO, were immediately
freeze dried under liquid nitrogen and utilized for further study. XPS
spectra of Ir-4f lines (doublet) were utilized to investigate the
formation of high-valent oxo- and peroxo- species involved in the
photochemical process proposed in the mechanism (Fig. S18, ESI†).
The doublets corresponds to Ir-4f7/2 and Ir-4f5/2 lines at 61.45,
and 64.40 eV for 1 and 3 and 61.65, and 64.55 eV for 2,
respectively. The Ir-4f7/2 binding energy is obviously higher than
that for metallic Ir (60.9 eV), indicating a higher oxidation level of
the iridium species. From the literature values for Ir-4f7/2 and Ir-
4f5/2 lines it is clear that high-valent Ir(IV) oxidation state exists in
the concerned samples.12
(a) Z. Liu and P. J. Sadler, Acc. Chem. Res., 2014, 47
1174 1185; (b) S. Mukhopadhyay, R. K. Gupta, R. P. Paitandi,
N. Rana, G. Sharma, B. Koch, L. K. Rana, M. S. Hundal and D.
−4506
,
−
S. Pandey, Organometallics, 2015, 34, 4491
(a) M. Panda, C. Das, G.-H. Lee, S.-M. Peng and S. Goswami,
Dalton Trans., 2004, 2655–2661; (b) G. C. Allen, G. A. M. El-
Sharkawy and K. D. Warren, Inorg. Chem., 1972, 11, 51 56.
.
−
7
8
9
Y.-F. Han, and G.-X. Jin, Chem. Soc. Rev., 2014, 43, 2799—
2823.
W.-B. Yu, Q.-Y. He, H.-T. Shi, J.-Y. Jia and X. Wei, Dalton
Trans., 2014, 43, 6561 – 6566.
D. Zhao, X. Liao, X. Yan, S. G. Huling, T. Chai, and H. Tao, J.
Hazard. Mater., 2013, 254– 255, 228–235.
10 J. A. Woods, R. Lalrempuia, A. Petronilho, N. D. McDaniel, H.
M.-Bunz, M. Albrecht and S. Bernhard, Energy Environ. Sci.,
2014, , 2316-2328.
11 V.-H. Tran, T. Yatabe, T. Matsumoto, H. Nakai, K. Suzuki, T.
Enomoto, T. Hibino, K. Kaneko and S. Ogo, Chem. Comm.,
2015, 51, 12589 12592.
12 (a) G. Li, H. Yu, X. Wang, D. Yang, Y. Li,Z. Shao, and B. Yi, J.
Power Sources, 2014, 249, 175 184; (b) Y. I. Kim, and W. E.
Hatfield, Inorg. Chim. Acta, 1991, 188, 15 24; (c) H. Y. Hall,
and P. M. A. Sherwood, J. Chem. SOC., Faraday Trans. I,
1984, 80, 135 152; (d) J. M. Kahk, C. G. Poll, F. E. Oropeza, J.
7
Conclusions
Conclusively, three proficient cyclometalated Ir based catalysts
for homogeneous WO have been developed for the pursuit of
renewable energy fuels and efficacy of 1−3 has been examined
toward both chemical and photochemical WO. These exhibited
good stability at extremely low pH and to LED light (440 nm)
irradiation. CV, UV/vis and XPS spectral studies indicated existence
of Ir(IV) and Ir(V) species in catalytic cycle. Further, these catalysts
exhibited impressive TON for photochemical water oxidation at
neutral pH. The molecular nature of the catalysts remained intact
−
−
−
−
M. Ablett, D. Céolin, J-P. Rueff, S. Agrestini, Y. Utsumi, K. D.
Tsuei, Y. F. Liao, F. Borgatti, G. Panaccione, A. Regoutz, R. G.
Egdell, B. J. Morgan, D. O. Scanlon, and D. J. Payne, Phys.
Rev. Lett., 2014, 112, 117601−117606.
1
despite photochemical irradiation which has been supported by H
NMR, TEM and DLS analysis. Owing to molecular nature of the
catalysts these can be further improved by variation of ligands to
have efficient catalytic systems both in terms of TON and TOF.
Notes and references
‡ S.M. thanks the University Grants Commission, New Delhi,
India for the award of a Senior Research Fellowship [19-
6/2011(i) EU-IV]. We are also grateful to Dr. Sayam Sen Gupta
and Mr. Kundan K. Singh, National Chemical Laboratory, Pune,
India, for extending some facilities, and helpful discussions.
1
(a) N. D. McDaniel, F. J. Coughlin, L. L. Tinker and S.
Bernhard, J. Am. Chem. Soc., 2008, 130, 210 217; (b) J. D.
−
Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C.
D. Incarvito, O. Eisenstein, G. W. Brudvig and R. H. Crabtree,
J. Am. Chem. Soc., 2010, 132, 16017–16029; (c) J. M.
Thomsen, S. W. Sheehan, S. M. Hashmi, J. Campos, U.
Hintermair, R. H. Crabtree, and G. W. Brudvig, J. Am. Chem.
Soc., 2014, 136, 13826–13834; (d) J. M. Thomsen, D. L.
Huang, R. H. Crabtree and G. W. Brudvig, Dalton Trans.,
2015, 44, 12452–12472.
2
3
(a) Meyer, T. J. Acc. Chem. Res., 1989, 22, 163
A. Acevedo, M. K. Brennaman, and T. J. Meyer, Inorg. Chem.,
2005, 44, 6802 6826; (c) D. G. H. Hetterscheid, and J. N. H.
Reek, Angew. Chem. Int. Ed., 2012, 51, 9740–9747; (d) C.
Panda, J. Debgupta, D. D. Díaz, K. K. Singh, S. S. Gupta, and B.
B. Dhar, J. Am. Chem. Soc., 2014, 136, 12273–12282; (e) D. J.
Wasylenko, R. D. Palmer and C. P. Berlinguette, Chem.
Commun., 2013, 49, 218—227.
−170; (b) J. H.
−
(a) T. Zhang, K. E. deKrafft, J.-L. Wang, C. Wang, and W. Lin,
Eur. J. Inorg. Chem. I, 2014, 698–707; (b) D. G. H.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins