C O M M U N I C A T I O N S
11B NMR resonances at 67.3 and 3.3 ppm respectively, suggesting
a formulation similar to that of 1. This was confirmed crystallo-
graphically (Figure 1).18 While the general structural features of 2
are similar to those of 1, the P-N and N-N bonds are slightly
longer at 1.7107(6) and 1.2602(8) Å, respectively, while the N-O
bond distance is slightly shorter at 1.3270(8) Å. The O-B distance
in 2 is similar to that in 1. These perturbations demonstrate that
the Lewis acidity at B has a greater impact on the remote N-N
and P-N interactions without a dramatic effect on the B-O bond.
Additional insight into the bonding in 1 was obtained from DFT
calculations at the B3LYP/6-31G(d) level of theory. The optimized
geometry 1calc is in good agreement with the crystallographically
determined structure, with a somewhat longer NsN (1.273 Å) and
shorter NsO bond (1.298 Å). A frequency analysis for 1calc revealed
NsN and NsO infrared frequencies in the fingerprint region at
1483 and 1257 cm-1, respectively, corroborating the experimental
observation that NNO vibrations are obscured in the IR spectrum
of 1. Natural Bond Orbital analysis shows the bonding within the
NNO fragment to consist of a NdN double bond and a NsO single
bond (Figure 2), consistent with the crystallographic data.
Research (NWO). R.C.N. is grateful for the award of an NSERC
of Canada scholarship.
Supporting Information Available: Experimental and computa-
tional details, NMR spectra of 1-15N and X-ray crystallographic details
of 1 and 2. This material is available free of charge via the Internet at
References
(1) Hansen, J.; Sato, M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16109.
(2) (a) Lee, D.-H.; Mondan, B., Karlin, K. D. Nitrogen Monoxide and Nitrous
Oxide Binding and Reduction. In ActiVation of Small Molecules; Tolman,
W. B., Ed. WILEY-VCH Verlag GmbH: Weinheim, 2006. (b) Leont’ev,
A. V.; Fomicheva, O. A.; Proskurnina, M. V.; Zefirov, N. S. Russ. Chem.
ReV. 2001, 70, 91.
(3) Chen, P.; Gorelsky, S. I.; Ghosh, S.; Solomon, E. I. Angew. Chem., Int.
Ed. 2004, 43, 4132.
(4) Bar-Nahum, I.; Gupta, A. K.; Huber, S. M.; Ertem, M. Z.; Cramer, C. J.;
Tolman, W. B. J. Am. Chem. Soc. 2009, 131, 2812.
(5) (a) Bottomley, F. Polyhedron 1992, 11, 1707. (b) Howard, W. A.; Parkin,
G. J. Am. Chem. Soc. 1994, 116, 606. (c) Groves, J. T.; Roman, J. S. J. Am.
Chem. Soc. 1995, 117, 5594. (d) Harman, W. H.; Chang, C. J. J. Am. Chem.
Soc. 2007, 129, 15128. (e) Yu, H. Z.; Jia, G. C.; Lin, Z. Organometallics
2009, 28, 1158.
(6) (a) Vaughan, G. A.; Rupert, P. B.; Hillhouse, G. L. J. Am. Chem. Soc.
1987, 109, 5538. (b) Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L.;
Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 5491. (c) Vaughan, G. A.;
Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1990, 112, 7994. (d)
Kaplan, A. W.; Bergman, R. G. Organometallics 1997, 16, 1106. (e) Yu,
H. Z.; Jia, G. C.; Lin, Z. Y. Organometallics 2007, 26, 6769. (f) Yu, H. Z.;
Jia, G. C.; Lin, Z. Y. Organometallics 2008, 27, 3825.
(7) (a) Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C.;
Protasiewicz, J. D. J. Am. Chem. Soc. 1995, 117, 4999. (b) Johnson, A. R.;
Davis, W. M.; Cummins, C. C.; Serron, S.; Nolan, S. P.; Musaev, D. G.;
Morokuma, K. J. Am. Chem. Soc. 1998, 120, 2071. (c) Cherry, J.-P. F.;
Johnson, A. R.; Baraldo, L. M.; Tsai, Y.-C.; Cummins, C. C.; Kryatov,
S. V.; Rybak-Akimova, E. V.; Capps, K. B.; Hoff, C. D.; Haar, C. M.;
Nolan, S. P. J. Am. Chem. Soc. 2001, 123, 7271.
Figure 2. NBO orbitals for the NdN σ- and π-bond (left, middle) and
NsO σ-bond (right).
(8) Lee, J.-H.; Pink, M.; Tomaszewski, J.; Fan, H.; Caulton, K. G. J. Am. Chem.
Soc. 2007, 129, 8706.
(9) (a) Parmon, V. N.; Panov, G. I.; Uriarte, A.; Noskov, A. S. Catal. Today
2005, 100, 115. (b) Poh, S.; Hernandez, R.; Inagaki, M.; Jessop, P. G.
Org. Lett. 1999, 1, 583.
(10) (a) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1969, 91, 6874. (b) Pamplin,
C. B.; Ma, E. S. F.; Safari, N.; Rettig, S. J.; James, B. R. J. Am. Chem.
Soc. 2001, 123, 8596.
(11) (a) Bottomley, F.; Crawford, J. R. J. Am. Chem. Soc. 1972, 94, 9092. (b)
Bottomley, F.; Brooks, W. V. F. Inorg. Chem. 1977, 16, 501. (c) Paulat,
F.; Kuschel, T.; Nather, C.; Praneeth, V. K. K.; Sander, O.; Lehnert, N.
Inorg. Chem. 2004, 43, 6979.
(12) Tuan, D. F. T.; Hoffmann, R. Inorg. Chem. 1985, 24, 871.
(13) (a) Stephan, D. W. Org. Biomol. Chem. 2008, 1535. (b) Stephan, D. W.
Dalton Trans. 2009, 3129.
(14) (a) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science
2006, 314 (5802), 1124. (b) Spies, P.; Erker, G.; Kehr, G.; Bergander, K.;
Fröhlich, R.; Grimme, S.; Stephan, D. W. Chem. Commun. 2007, 5072.
(c) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskela¨,
M.; Repo, T.; Pyykko¨, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117.
(15) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int.
Ed. 2007, 46, 8050.
The formation of 1calc is exothermic by 17.4 kcal/mol. However,
1calc is shown to be a kinetic product as extrusion of N2 and
formation of tBu3PdO and B(C6F5)3 is thermodynamically favorable
by 60.4 kcal/mol relative to 1. This notion was confirmed
experimentally. Heating an NMR sample of 1 in C6D5Br at 135 °C
for 44 h resulted in the liberation of N2 and formation of the Lewis
acid-base adduct (tBu3PdO)B(C6F5)3 3 as the main product (∼80%
at 95% conversion) as evidenced by spectroscopic data and
independent synthesis (Figure 3). In addition, photolysis of 1 readily
afforded 3 (5 min of irradiation gives ∼75% at 90% conversion),
but prolonged photolysis resulted in decomposition to unidentified
species. These observations suggest that isomerization of 1 placing
P and O cis to one another prompts loss of N2. This notion is
reminiscent of proposed transition states in Staudinger oxidations
of phosphines.23
(16) (a) McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem., Int.
Ed. 2007, 46, 4968. (b) Dureen, M. A.; Lough, A.; Gilbert, T. M.; Stephan,
D. W. Chem. Commun. 2008, 4303. (c) Ullrich, M.; Seto, K. S.-H.; Lough,
A. J.; Stephan, D. W. Chem. Commun. 2009, 2335. (d) Dureen, M. A.;
Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 8396. (e) Mo¨mming, C. M.;
Otten, E.; Kehr, G.; Fro¨hlich, R.; Grimme, S.; Stephan, D. W.; Erker, G.
Angew. Chem., Int. Ed. 2009, 48, ASAP. (f) Stephan, D. W. Dalton Trans.
2009, 3129.
(17) Pileio, G.; Carravetta, M.; Hughes, E.; Levitt, M. H. J. Am. Chem. Soc.
2008, 130, 12582.
j
(18) X-ray data: 1: P1, a ) 9.5265(4) Å, b ) 11.6603(5) Å, c ) 14.3458(7) Å,
R ) 76.6040(10)°, ꢀ ) 89.0710(10)°, γ ) 87.1940(10)°, V ) 1548.32(12)
Å3, data (>3σ) ) 5446, var 451, R ) 0.0286, Rw ) 0.0778, GOF 1.013. 2:
Figure 3. Proposed mechanism of thermolysis or photolysis of 1 to 3.
j
P1, a ) 10.3832(8) Å, b ) 11.9066(9) Å, c ) 14.5601(12) Å, R )
70.621(4)°, ꢀ ) 76.818(4)°, γ ) 65.912(4)°, V ) 1541.2(2) Å3, data (>3σ)
) 16452, var 415, R ) 0.0377, Rw ) 0.1043, GOF 1.021.
(19) Griggs, J. J. L.; Narahari Rao, K.; Jones, L. H.; Potter, R. M. J. Mol.
Spectrosc. 1968, 25, 34.
In summary, frustrated Lewis pairs of a basic yet sterically
encumbered phosphine with Lewis acids bind nitrous oxide to give
intact PNNOB linkages. The reactivity of these new N2O species
and the utility of FLPs in the activation of small molecules continue
to be the focus of efforts in our laboratory.
(20) (a) Bebbington, M. W. P.; Bourissou, D. Coord. Chem. ReV. 2009, 253,
1248. (b) Fortman, G. C.; Captain, B.; Hoff, C. D. Inorg. Chem. 2009, 48,
1808.
(21) (a) Courtenay, S.; Wei, P. R.; Stephan, D. W. Can. J. Chem. 2003, 81,
1471. (b) Courtenay, S.; Walsh, D.; Hawkeswood, S.; Wei, P.; Das, A. K.;
Stephan, D. W. Inorg. Chem. 2007, 46, 3623.
(22) Morrison, D. J.; Piers, W. E. Org. Lett. 2003, 5, 2857.
(23) Staudinger, H.; Hauser, E. HelV. Chim. Acta 1921, 4 (1), 861.
Acknowledgment. D.W.S. gratefully acknowledges the financial
support of NSERC of Canada and the award of a Canada Research
Chair. E.O. is grateful for the support of a Rubicon postdoctoral
fellowship from The Netherlands Organisation for Scientific
JA904377V
9
J. AM. CHEM. SOC. VOL. 131, NO. 29, 2009 9919