120
W.W. Rudolph, P. Schmidt / Thermochimica Acta 521 (2011) 112–120
ing the B3+ cations results mainly by widening and tilting of the BO6
octahedra along the ab plane via the oxygen O(3).
These results suggest that the substitutions in the A and B site
can be distinguished on the basis of their effects on the unit cell
parameters. Values in unit cell parameters react very sensitively
on change in chemical composition which has been recently found
in the case for alkali metal alunite compounds [14].
[9] S.O. Aslanian, D.E. Apostolov, Y.A. Yordanov, Isomorphous substitution of alu-
minum(3+) and gallium(3+) ions in the alunite structure, Dokl. Bolgarskoi Akad.
Nauk 35 (1982) 1093–1096.
[10] J.E. Dutrizac, J.L. Jambor, Jarosites and their application in hydrometallurgy,
in: P.H. Ribbe (Ed.), Reviews in Mineralogy and Geochemistry: Sulfate Miner-
als, vol. 40, Mineralogical Society of America, Washington, DC, 2000, pp. 405–
452.
[11] U. Kolitsch, A. Pring, Crystal chemistry of the crandallite, beudantite and alunite
groups: a review and evaluation of the suitability as storage materials for toxic
metals, J. Mineral. Petrolog. Sci. 96 (2000) 67–78.
[12] G. Klingelhöfer, R.V. Morris, B. Bernhardt, C. Schröder, D.S. Rodionov, P.A. de
Souza Jr., A. Yen, R. Gellert, E.N. Evlanov, B. Zubkov, J. Foh, U. Bonnes, E.
Kankeleit, P. Gütlich, D.W. Ming, F. Renz, T. Wdowiak, S.W. Squyres, R.E. Arvid-
son, Jarosite and hematite at Meridiani Planum from opportunity’s Moessbauer
spectrometer, Science 306 (2004) 1740–1745.
[13] A.S. Wills, A. Harrison, C. Ritter, R.I. Smith, Magnetic properties of pure and dia-
magnetically doped jarosites: model kagome antiferromagnets with variable
coverage of the magnetic lattice, Phys. Rev. B 61 (2000) 6156–6169.
[14] W.W. Rudolph, P. Schmidt, R. Mason, Synthetic alunites of the potassium-
oxonium solid solution series and some other members of the group: synthesis,
thermal and X-ray characterization, Eur. J. Mineral. 15 (2003) 913–924.
[15] L.C. Basciano, R.C. Peterson, Jarosite-hydronium jarosite solid-solution series
with full iron site occupancy: mineralogy and crystal chemistry, Am. Mineral.
292 (2007) 1464–1473.
5. Conclusions
1. Careful synthesis and chemical analysis are required in order to
prepare and characterize stoichiometric end member galloalu-
nites.
2. The stages of thermal decomposition of these galloalunites show
a common decomposition mechanism for all end members (two
main decomposition stages). Taking into account the final prod-
ucts of decomposition: Ga2O3 (for galloalunites with A = H3O+
and NH4+) or Ga2O3 and A2SO4 (with A = Na+, K+, and Rb+ for the
respective galloalunites) the composition of the samples may be
derived from the decomposition steps of the thermogravimetry.
3. The thermogravimetric results confirmed the analytical results
on the end member galloalunites and showed that these gal-
loalunites are stoichiometric.
4. Galloalunite, the pure potassium end member, shows the highest
decomposition temperature (ϑons = 395 ◦C) while sodium gal-
loalunite (380 ◦C) and rubidium galloalunite (382 ◦C) are less
stable followed by ammonium alunite (325 ◦C) and oxonium
alunite (207 ◦C).
[16] R.E. Stoffregen, Stability relations of jarosite and natrojarosite at 150–250 ◦C,
Geochim. Cosmochim. Acta 57 (1993) 2417–2429.
[17] W.W. Rudolph, C.C. Pye, Gallium(iii) hydration in aqueous solution of perchlo-
rate, nitrate and sulfate. Raman and 71-Ga NMR spectroscopic studies and ab
initio molecular orbital calculations of gallium(iii) water clusters, Phys. Chem.
Chem. Phys. 4 (2002) 4319–4327.
[18] W.W. Rudolph, R. Mason, The hydrothermal formation of hydronium alunite
from aqueous Al2(SO4)3 solution and the characterization of the solid, Z. Phys.
Chem. 216 (2002) 1061–1083.
[19] W. Kraus, G. Nolze, PowderCell Version 2.4, Federal Institute for Materials
Research and Testing, Berlin, Germany, 2000.
[20] I.V. Tananaev, V.G. Kuznetsov, N.K. Bolshakova, Gallium basic salts of the alunite
type, Zh. Neorg. Khim. 12 (1967) 57–61.
[21] J.A. Ripmeester, C.I. Ratcliffe, J.E. Dutrizac, J.L. Jambor, Hydronium ion in the
alunite-jarosite group, Can. Mineral. 24 (1986) 435–447.
[22] P. Couchot, R. Mercier, J. Bernard, Vibration spectra of the sulfate ion in a series
of crystalline compounds of the type M1M1 11(SO4)2. Relations with the struc-
ture of such compounds, Bull. Soc. Chim. France 10 (1970) 3433–3440.
[23] E. Slansky, Thermal investigation of alunite and natroalunite, N. Jb. Miner. Mh.
(1973) 124–131.
[24] O. Knacke, O. Kubaschevski, K. Hesselmann, Thermochemical Properties
of Inorg. Substances, 2nd edition, Springer, Berlin/Heidelberg/Budapest/
Stahleisen, 1991.
5. With the increase of the effective ionic radius of the cation occu-
pying the A site in the series from Na+, K+, H3O+, NH4 to Rb+
+
there is a large increase in c unit cell parameter accompanied by
only a slight increase in a parameter.
Acknowledgement
We thank Frau H. Dallmann, TU Dresden, Institut für Anorgan-
ische Chemie, for the thermal measurements.
[25] J. Pysiak, A. Glinka, Thermal decomposition of basic aluminum potassium sul-
fate. Part I. Stages of decomposition, Thermochim. Acta 44 (1981) 21–28.
[26] R. Roy, V.G. Hill, E.F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-
H2O, J. Am. Chem. Soc. 74 (1952) 719–722;
References
S. Geller, Crystal structure of -Ga2O3, J. Chem. Phys. 33 (1960) 676–684;
J. Aahman, G. Svensson, J. Albertsson, A reinvestigation of -gallium oxide, Acta
Crystallogr. C 52 (1996) 1336–1338.
[1] K.M. Scott, Nomenclature of the alunite supergroup: discussion, Can. Mineral.
38 (2000) 1295–1297.
[2] J.L. Jambor, Nomenclature of the alunite supergroup: reply, Can. Mineral. 37
(1999) 1323–1341.
[3] J.L. Jambor, Nomenclature of the alunite supergroup, Can. Mineral. 38 (2000)
1298–1303.
[4] R.E. Stoffregen, C.N. Alpers, J.L. Jambor, Alunite-jarosite crystallography, ther-
modynamics, and geochemistry, in: P.H. Ribbe (Ed.), Reviews in Mineralogy
and Geochemistry: Sulfate Minerals, vol. 40, Mineralogical Society of America,
Washington, DC, 2000, pp. 454–479.
[27] S.B. Hendricks, The crystal structure of alunite and the jarosites, Am. Mineral.
22 (1937) 773–784.
[28] R. Wang, W.F. Bradley, H. Steinfink, The crystal structure of alunite, Acta Crys-
tallogr. 18 (1965) 249–252.
[29] R.E. Stoffregen, C.N. Alpers, Observations on the unit-cell dimensions, water
contents, and ␦D values of natural and synthetic alunite, Am. Mineral. 77 (1992)
1092–1098.
[30] R.W.T. Wilkins, A. Mateen, G.W. West, Spectroscopic study of oxonium ions in
minerals, Am. Mineral. 59 (1974) 811–819.
[31] A.A. Khan, W.H. Baur, Salt hydrates. VIII. Crystal structures of sodium ammo-
nium orthochromate dihydrate and magnesium diammonium bis(hydrogen
orthophosphate) tetrahydrate and a discussion of the ammonium ion, Acta
Crystallogr. B28 (1972) 683–693.
[5] S. Menchetti, C. Sabelli, Crystal chemistry of the alunite series: crystal structure
refinement of alunite and synthetic jarosite, N. Jb. Mineral. Mh. (1976) 406–417.
[6] J.T. Szymanski, The crystal structure of plumbojarosite Pb[Fe3(SO4)2(OH)6]2,
Can. Mineral. 23 (1985) 659–668.
[32] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic
distances in halides and chalcogenides, Acta Crystallogr. A32 (1976) 751–767.
[33] G. Frenzen, W. Massa, Potassium dioxonium hexafluoroaluminate, Acta Crys-
tallogr. C46 (2) (1990) 190–192.
[7] G. Johansson, The crystal structure of a basic gallium sulfate related to alunite,
Arkiv kemi 20 (1963) 343–352.
[8] J.E. Dutrizac, J.L. Jambor, T.T. Chen, Host minerals for the gallium-germanium
ores of the Apex mine, Utah, Econ. Geol. 81 (1986) 946–950.