[18] S.K. Nair, P.A. Ludwig, D.W. Christianson, 2-Site binding of phenol in the active-site of
human carbonic anhydrase structural implications for substrate association, J. Am. Chem.
Soc. 116 (8) (1994) 3659-60
[19] C.T. Supuran, Carbonic anhydrases: novel therapeutic applications for inhibitors and
activators, Nat. Rev. Drug. Discov, 2 (2008) 168-81
[20] G. De Simone, C.T. Supuran, (In)organic anions as carbonic anhydrase inhibitors. J.
Inorg. Biochem. 111 (2012) 117-29
[21] S. Bilginer, E. Unluer, H.I. Gul, E. Mete, S. Isik, D. Vullo, et al., Carbonic anhydrase
inhibitors. Phenols incorporating 2-or 3-pyridyl-ethenylcarbonyl and tertiary amine
moieties strongly inhibit Saccharomyces cerevisiae beta-carbonic anhydrase, J. Enzyme.
Inhib. Med. Chem. 29(4) (2014) 495-9
[22] A. Cave, M. Leboeuf, P.G. Waterman, S.W. Pelletier, In Alkaloids:Chemical and
Biological Perspective. In: Ed.;Wiley, editor. London: Ed.;Wiley; (1987) p:245
[23] G.J. Arango, D. Cortes, B.K. Cassels, A. Cave, C. Merienne. Azafluorenones from
Oxandra cf. major and biogenetic considerations, Phytochem. 26 (1987) 2093
[24] M.O.F. Goulart, A.E.G. Sant’ana, A.B. de Oliveira, G.G. de Oliveira, J.G.S. Maia,
Azafluorenones and azaanthraquinone from Guatteria dielsiana, Phytochem. 25(7) (1986)
1691-1695
[25] H.T. Van, W.J. Cho, Structural modification of 3-arylisoquinolines to isoindolo[2,1-
b]isoquinolinones for the development of novel topoisomerase 1 inhibitors with
molecular docking study, Bioorg. Med. Chem. Lett.19(9) (2009) 2551-4
[26] X. Xiao, M, Cushman. An ab initio quantum mechanics calculation that correlates with
ligand orientation and DNA cleavage site selectivity in camptothecin-DNA-
topoisomerase I ternary cleavage complexes, J. Am. Chem. Soc. 127(28) (2005) 9960-1
[27] T.M. Kadayat, C. Park, K.Y. Jun, T.B. Thapa Magar, G. Bist, H.Y. Yoo, et al.,
Hydroxylated 2,4-diphenyl indenopyridine derivatives as a selective non-intercalative
topoisomerase IIalpha catalytic inhibitor, Eur. J. Med. Chem. 90 (2015) 302-14
[28] T.M. Kadayat, C. Song, Y. Kwon, E.S. Lee, Modified 2,4-diaryl-5H-indeno[1,2-
b]pyridines with hydroxyl and chlorine moiety: Synthesis, anticancer activity, and
structure-activity relationship study, Bioorg. Chem. 62 (2015) 30-40
[29] T.M. Kadayat, C. Song, S. Shin, T.B. Magar, G. Bist, A. Shrestha, et al., Synthesis,
topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship
study of 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno[1,2-b]pyridines, Bioorg.
Med. Chem. 23(13) (2015) 3499-512
[30] S. Inayama, K. Mamoto, T. Shibata, T. Hirose, Structure and antitumor activity
relationship of 2-arylidene-4-cyclopentene-1, 3-diones and 2-arylideneindan-1, 3-diones,
J. Med. Chem. 19(3) (1976) 433-6
[31] C. Yamali, H.I. Gul, D.O. Ozgun, H. Sakagami, N. Umemura, C. Kazaz, et al., Synthesis
and cytotoxic activities of difluoro-dimethoxy chalcones, Anti-cancer. Agents. Med.
Chem. 17(10) (2017) 1426-33
[32] H.I. Gul, M. Tugrak, H. Sakagami, Synthesis of some acrylophenones with N-
methylpiperazine and evaluation of their cytotoxicities, J. Enzyme. Inhib. Med. Chem.
31(1) (2016) 147-51
[33] I. Gulcin, A. Scozzafava, C.T. Supuran, H. Akincioglu, Z. Koksal, F. Turkan, et al., The
effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including
acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase,
and carbonic anhydrase isoenzymes I, II, IX, and XII, J. Enzyme. Inhib. Med. Chem.
31(6) (2016) 1095-101
16