C O M M U N I C A T I O N S
Acknowledgment. This work was supported by the Fannie and
John Hertz Foundation (A.R.D.), the National Science Foundation,
and the National Institutes of Health (Metalloprotein Program
Project Grant P01 GM48495; NRSA fellowship GM20703 to A.-
M.A.H.).
Supporting Information Available: Syntheses of compounds;
spectroscopic data; and crystallographic experimental details (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) California Institute of Technology. (b) The Scripps Research Institute.
(2) (a) Kagawa, N.; Waterman, M. R. In Cytochrome P450: Structure,
Mechanism and Biochemistry; Ortiz de Montellano, P. R., Ed.; Plenum
Press: New York, 1995; pp 419-442. (b) Capdevila, J. H.; Zeldin, D.;
Makita, K.; Karara, A.; Falck, J. R. In Cytochrome P450: Structure,
Mechanism and Biochemistry; Ortiz de Montellano, P. R., Ed.; Plenum
Press: New York, 1995; pp 443-472. (c) Goss, P. E.; Strasser, K. J.
Clin. Oncol. 2001, 19, 881-94. (d) Frye, L. L.; Leonard, D. A. Crit. ReV.
Biochem. Mol. Biol. 1999, 34, 123-140. (e) Sheehan, D. J.; Hitchcock,
C. A.; Sibley, C. M. Clin. Microbiol. ReV. 1999, 12, 40-79.
(3) (a) Rendic, S.; DiCarlo, F. J. Drug Metab. ReV. 1997, 29, 413-580. (b)
Guengerich, F. P. In Cytochrome P450: Structure, Mechanism and
Biochemistry; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York,
1995; pp 473-536.
Figure 3. The 2.2 Å resolution structure of the D-8-Ad:P450cam cocrystal,
with the omit electron density (|Fobs| - |Fcalc|) contoured at 4.0 σ (blue
positive, red negative).
(4) Otton, S. V.; Wu, D. F.; Joffe, R. T.; Cheung, S. W.; Sellers, E. M. Clin.
Pharm. Ther. 1993, 53, 401-409.
(5) Li, A. P. Drug-drug interactions: scientific and regulatory perspectiVes;
Academic Press: New York, 1997; Vol. 21, p 304.
(6) (a) Wu, P.; Brand, L. Anal. Biochem. 1994, 218, 1-13. (b) Selvin, P. R.
Nat. Struct. Biol. 2000, 7, 730-734.
(7) The fluorescence of D-8-Ad (λmax ) 480 nm) is blue shifted from that of
D-4-Ad (550 nm), indicating that the D-8-Ad environment is less polar
[Li, Y.-H.; Chan, L.-M.; Tyer, L.; Moody, R. T.; Himel, C. M.; Hercules,
D. M. J. Am. Chem. Soc. 1975, 97, 3118-3126]. One possible explanation
is that the hydrophobic tail of D-8-Ad folds back in solution to partially
cover the dansyl fluorophore, effectively lowering the local dielectric.
Although the fluorescence maximum is not concentration dependent (data
not shown), D-8-Ad aggregation cannot be ruled out.
(8) Schobel, U.; Coille, I.; Brecht, A.; Steinwand, M.; Gauglitz, G. Anal.
Chem. 2001, 73, 5172-5179.
Figure 4. (Top) Ruthenium tris-bipyridyl photosensitizers known to bind
P450cam. The crystal structures of both compounds bound to P450cam
have been determined to high resolution (Ru-9-Ad 1.55 Å, Ru-F8bp-Ad
1.65 Å).10b,d (Bottom) Dissociation constants, binding energies, buried
solvent accessible surface areas (SASA), and the binding energy per square
angstrom of buried surface area for the P450cam:probe complexes. The
Ru-9-Ad:P450cam crystal contains both ∆ and Λ stereoisomers.
(9) Atkins, W. M.; Sligar, S. G. J. Biol. Chem. 1988, 263, 18842-18849.
(10) As with D-4-Ad, titration of a 1:1 mixture of P450cam and D-8-Ad with
camphor results in conversion to high-spin ferric P450cam (Figure 1b).
However, the fluorescence spectra indicate that D-8-Ad is not displaced
from the enzyme by even a large excess of camphor (250 µM; see also
Figure 2b). These data are consistent with simultaneous binding of
camphor and D-8-Ad. Simultaneous binding of camphor and ruthenium
tris-bipyridyl probes has been previously observed [Dmochowski, I. J.
Probing cytochrome P450 with sensitizer-linked substrates; California
Institute of Technology: Pasadena, CA, 2000].
(11) (a) Wilker, J. J.; Dmochowski, I. J.; Dawson, J. H.; Winkler, J. R.; Gray,
H. B. Angew. Chem., Int. Ed. 1999, 38, 90-92. (b) Dmochowski, I. J.;
Crane, B. R.; Wilker, J. J.; Winkler, J. R.; Gray, H. B. Proc. Natl. Acad.
Sci. U.S.A. 1999, 23, 12987-12990. (c) Dmochowski, I. J.; Winkler, J.
R.; Gray, H. B. J. Inorg. Biochem. 2000, 81, 221-228. (d) Dunn, A. R.;
Dmochowski, I. J.; Bilwes, A. M.; Gray, H. B.; Crane, B. R. Proc. Natl.
Acad. Sci. U.S.A. 2001, 98, 12420-12425.
surface area are comparable. Thus, even though P450cam has
evolved for a single, relatively small substrate, it has the ability to
bind much larger molecules more tightly. The key to this ability is
the mobility of the B′, F, and G helices.11d Both solution13 and
crystallographic14 studies of other P450s suggest that this feature
is common to the P450 superfamily.
(12) Poulos, T. L.; Finzel, B. C.; Howard, A. J. J. Mol. Biol. 1987, 195, 867-
700.
(13) (a) DiPrimo, C.; Hoa, G. H. B.; Deprez, E.; Douzou, P.; Sligar, S. G.
Biochemistry 1993, 32, 3671-3676. (b) Prasad, S.; Mazumdar, S.; Mitra,
S. FEBS Lett. 2000, 477, 157-160. (c) Lepesheva, G. I.; Strushkevich,
N. V.; Usanov, S. A. Biochim. Biophys. Acta 1999, 1434, 31-43.
(14) (a) Li, H.; Poulos, T. L. Biochim. Biophys. Acta 1999, 1441, 141-149.
(b) Ravichandran, K. G.; Boddupalli, S. S.; Hasemann, C. A.; Peterson,
J. A.; Deisenhofer, J. Science 1993, 261, 731-736. (c) Hasemann, C. A.;
Ravichandran, K. G.; Peterson, J. A.; Deisenhofer, J. J. Mol. Biol. 1994,
236, 1169-1185. (d) Williams, P. A.; Cosme, J.; Sridhar, V.; Johnson,
E. F.; McRee, D. E. Mol. Cell 2000, 5, 121-131. (e) Yano, J. K.; Koo,
L. S.; Schuller, D. J.; Li, H.; Ortiz de Montellano, P. R.; Poulos, T. L. J.
Biol. Chem. 2000, 275, 31086-31092.
The two probes described herein illustrate the usefulness of our
methodology. D-4-Ad can be employed to screen potential P450
inhibitors, as it is easily displaced by other molecules with
comparable or lower dissociation constants. In contrast, D-8-Ad
binds extremely tightly: the conformational flexibility of the P450
fold allows the enzyme to close around the probe, thereby making
a great many productive hydrophobic contacts. The insight gained
from the D-8-Ad:P450cam structure could potentially lead to a more
rational design strategy for P450 inhibitors.
JA0271678
9
J. AM. CHEM. SOC. VOL. 124, NO. 35, 2002 10255