H. Zhuang et al. / Journal of Alloys and Compounds 472 (2009) 411–415
415
between Ba5Nb4O15 and BaWO4 grains. The εr and the ꢀf values
of (1 − x)Ba5Nb4O15–xBaWO4 ceramics decrease with the increase
of BaWO4 content, and the quality factor (Q × f value) increase. The
(1 − x)Ba5Nb4O15–xBaWO4 ceramics with x = 0.54–0.65 sintered at
1100 ◦C have good microwave dielectric properties of εr = 21.0–16.9,
Q × f = 49,500–56,700 GHz, and ꢀf = 8.9 to −4.3 ppm/◦C. These com-
posite ceramics are promising materials for microwave and
millimeter wave applications.
[7] D.W. Kim, K.S. Hong, C.S. Yoon, C.K. Kim, J. Eur. Ceram. Soc. 23 (2003) 2597–2601.
[8] D.W. Kim, J.R. Kim, S.H. Yoon, K.S. Hong, C.K. Kim, J. Am. Ceram. Soc. 85 (2002)
2759–2762.
[9] R. Ratheesh, M.T. Sebastian, P. Mohanan, M.E. Tobar, J. Hartnett, R. Woode, D.G.
Blair, Mater. Lett. 45 (2000) 279–285.
[10] C. Vineis, P.K. Davies, T. Negas, S. Bell, Mater. Res. Bull. 31 (1996) 431–437.
[11] S. Kamba, J. Pwtzelt, E. Buixaders, D. Haubrich, P. Vanek, P. Kuzel, I.N. Jawahar,
M.T. Sebastian, P. Mohanan, J. Appl. Phys. 89 (2001) 3900–3906.
[12] I.N. Jawahar, P. Mohanan, M.T. Sebastian, Mater. Lett. 57 (2003) 4043–4048.
[13] J.M. De Paoli, J.A. Alonso, R.E. Carbonio, J. Phys. Chem. Solid 67 (2006)
1558–1566.
[14] R.C. Pullar, S. Farrah, N.M. Alford, J. Eur. Ceram. Soc. 27 (2007) 1059–1063.
[15] S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, J. Eur. Ceram. Soc. 26 (2006) 2051–2056.
[16] K.H. Yoon, D.H. Kim, E.S. Kim, J. Am. Ceram. Soc. 77 (1994) 1062–1066.
[17] J.S. Kima, J.-W. Kima, C.I. Cheona, Y.-S. Kimb, S. Nahmc, J.D. Byunc, J. Eur. Ceram.
Soc. 21 (2001) 2599–2604.
[18] Z.Q. Tian, H.X. Liu, H.T. Yu, S.X. Ouyang, Mater. Chem. Phys. 86 (2004) 228–232.
[19] W.E. Courtney, IEEE Trans. Microwave Theor. Tech. MMT-18 (1970) 476–485.
[20] B.W. Hakki, P.D. Coleman, IRE Trans. Microwave Theor. Tech. MMT-8 (1960)
402–410.
Acknowledgements
This work was supported by the Natural Science Foundation of
China (Grant Nos. 50672043, 50621201 and 50632030), and the
Ministry of Science and Technology of China through 973-Project
under 2002CB613307.
[21] J. Krupka, K. Derzakowski, B. Riddle, J.B. Jarbis, Meas. Sci. Technol. 9 (1998)
1751–1756.
[22] C.T. Lee, C.C. Ou, Y.C. Lin, J. Eur. Ceram. Soc. 27 (2007) 2273–2280.
[23] A.W. Sleight, Acta Cryst. B 28 (1972) 2899–2902.
[24] L.L.Y. Chang, M.G. Scroger, B. Phillips, J. Am. Ceram. Soc. 49 (1966) 385–390.
[25] W.D. Kingery, Introduction to Ceramics, second ed., Wiley, New York, 1976, p.
947.
References
[1] W. Wersing, Curr. Opin. Solid State Mat. Sci. 1 (1996) 715–731.
[2] Y. Tohdo, K. Kakimoto, H. Ohsato, H. Yamada, T. Okawa, J. Eur. Ceram. Soc. 26
(2006) 2039–2043.
[3] H. Zhang, L. Fang, R. Elsebrock, R.Z. Yuan, Mater. Chem. Phys. 93 (2005) 450–454.
[4] F. Zhao, Z.X. Yue, Y.C. Zhang, Z.L. Gui, L.T. Li, Key Eng. Mater. 280–283 (2005)
9–12.
[5] A.N. Baranov, Y.J. Oh, J. Eur. Ceram. Soc. 25 (2005) 3451–3457.
[6] L. Fang, L. Chen, H. Zhang, X.K. Hong, C.L. Diao, H.X. Liu, J. Mater. Sci. Mater.
Electron. 16 (2005) 149–151.
[26] A.E. Paladino, J. Am. Ceram. Soc. 54 (1971) 168–169.
[27] F. Zhao, Z.X. Yue, Y.Z. Lin, Z.L. Gui, L.T. Li, Ceram. Int. 33 (2007) 895–900.
[28] F. Zhao, Z.X. Yue, J. Pei, Z.L. Gui, L.T. Li., Appl. Phys. Lett. 90 (2007) 142908.
[29] H. Zhuang, Z.X. Yue, F. Zhao, J. Pei, G. Yang, L.T. Li, Jpn. J. Appl. Phys., in press.