Inorganic Chemistry
Article
(16) Takeda, T.; Hirosaki, N.; Funahshi, S.; Xie, R.-J. Narrow-Band
Green-Emitting Phosphor Ba2LiSi7AlN12:Eu2+ with High Thermal
Stability Discovered by a Single Particle Diagnosis Approach. Chem.
Mater. 2015, 27, 5892−5898.
ACKNOWLEDGMENTS
■
We thank Dr. Peter Mayer for collecting single-crystal data
(LMU). Dr. Constantin Hoch is thanked for valuable
discussions regarding single-crystal analysis along with
Christian Maak and Philipp Bielec (all at LMU) for
constructive discussions. Detlef Wiechert and Volker Weiler
(both at Lumileds Phosphor Center Aachen) are thanked for
performing temperature-dependent luminescence measure-
ments and data processing. Prof. Dr. Oliver Oeckler (Institute
for Mineralogy, Crystallography and Materials Science, Leipzig
University) is thanked for contributory annotations. Financial
support by the Fonds der Chemischen Industrie is gratefully
acknowledged.
(17) Xie, R.-J.; Hirosaki, N.; Li, H.-L.; Li, Y. Q.; Mitomo, M.
Synthesis and Photoluminescence Properties of β-sialon : Eu2+
(
Si6−zAlzOzN8−z : Eu2+ ) : A Promising Green Oxynitride Phosphor for
White Light-Emitting Diodes. J. Electrochem. Soc. 2007, 154, J314−
J319.
(18) Hirosaki, N.; Xie, R.-J.; Kimoto, K.; Sekiguchi, T.; Yamamoto,
Y.; Suehiro, T.; Mitomo, M. Characterization and properties of green-
emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting
diodes. Appl. Phys. Lett. 2005, 86, 211905.
(19) Li, S.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Zhou, X.; Lu, L.;
Zhang, L.; Takeda, T.; Hirosaki, N.; Xie, R.-J. Achieving High
Quantum Efficiency Narrow-Band β-Sialon:Eu2+ Phosphors for High-
Brightness LCD Backlights by Reducing the Eu3+ Luminescence
Killer. Chem. Mater. 2018, 30, 494−505.
REFERENCES
■
(1) Maak, C.; Strobel, P.; Weiler, V.; Schmidt, P. J.; Schnick, W.
Unprecedented Deep-Red Ce3+ Luminescence of the Nitridolithosi-
licates Li38.7RE3.3Ca5.7[Li2Si30N59]O2F (RE = La,Ce,Y). Chem. Mater.
2018, 30, 5500−5506.
(20) Seibald, M.; Oeckler, O.; Celinski, V. R.; Schmidt, P. J.; Tucks,
̈
A.; Schnick, W. Real structure and diffuse scattering of
Sr0.5Ba0.5Si2O2N2:Eu2+ - A highly efficient yellow phosphor for pc-
LEDs. Solid State Sci. 2011, 13, 1769−1778.
(2) Hirosaki, N.; Takeda, T.; Funahashi, S.; Xie, R.-J. Discovery of
New Nitridosilicate Phosphors for Solid State Lighting by the Single-
Particle-Diagnosis Approach. Chem. Mater. 2014, 26, 4280−4288.
(3) Neudert, L.; Durach, D.; Fahrnbauer, F.; Vaughan, G. B. M.;
Schnick, W.; Oeckler, O. Highly Symmetric AB2 Framework Related
to Tridymite in the Disordered Nitridosilicate La24Sr14−7x[Si36N72]-
(O1−xFx)14 (x = 0.489). Inorg. Chem. 2017, 56, 13070−13077.
(4) Strobel, P.; Weiler, V.; Hecht, C.; Schmidt, P. J.; Schnick, W.
Luminescence of the Narrow-Band Red Emitting Nitridomagnesosi-
licate Li2(Ca1−xSrx)2[Mg2Si2N6]:Eu2+ (x = 0−0.06). Chem. Mater.
2017, 29, 1377−1383.
(5) Poesl, C.; Schnick, W. Crystal Structure and Nontypical Deep-
Red Luminescence of Ca3Mg[Li2Si2N6]:Eu2+. Chem. Mater. 2017, 29,
3778−3784.
(6) Schmiechen, S.; Nietschke, F.; Schnick, W. Structural Relation-
ship between the Mg-Containing Nitridosilicates Ca2Mg[Li4Si2N6]
and Li2Ca2[Mg2Si2N6]. Eur. J. Inorg. Chem. 2015, 2015, 1592−1597.
(7) Li, Y.; Wang, C.-A.; Xie, H.; Cheng, J.; Goodenough, J. B. High
lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem.
Commun. 2011, 13, 1289−1292.
(21) Seibald, M.; Rosenthal, T.; Oeckler, O.; Maak, C.; Tucks, A.;
̈
Schmidt, P. J.; Wiechert, D.; Schnick, W. New Polymorph of the
Highly Efficient LED-Phosphor SrSi2O2N2:Eu2+ − Polytypism of a
Layered Oxonitridosilicate. Chem. Mater. 2013, 25, 1852−1857.
(22) Maak, C.; Hoch, C.; Schmidt, P. J.; Schnick, W.
Oxonitridosilicate Oxides RE26Ba6[Si22O19N36]O16:Eu2+ (RE = Y,
Tb) with a Unique Layered Structure and Orange-Red Luminescence
for RE = Y. Inorg. Chem. 2018, 57, 2242−2248.
(23) Seibald, M.; Rosenthal, T.; Oeckler, O.; Schnick, W. Highly
Efficient pc-LED Phosphors Sr1‑xBaxSi2O2N2:Eu2+ (0 × 1) - Crystal
Structures and Luminescence Properties Revisited. Crit. Rev. Solid
State Mater. Sci. 2014, 39, 215−229.
̈
(24) Kloß, S. D.; Neudert, L.; Doblinger, M.; Nentwig, M.; Oeckler,
O.; Schnick, W. Puzzling Intergrowth in Cerium Nitridophosphate
Unraveled by Joint Venture of Aberration-Corrected Scanning
Transmission Electron Microscopy and Synchrotron Diffraction. J.
Am. Chem. Soc. 2017, 139, 12724−12735.
̈
(25) Lange, H.; Wotting, G.; Winter, G. Silicon NitrideFrom
(8) Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion
Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem., Int. Ed.
2007, 46, 7778−7781.
(9) Wu, J.-F.; Pang, W. K.; Peterson, V. K.; Wei, L.; Guo, X. Garnet-
Type Fast Li-Ion Conductors with High Ionic Conductivities for All-
Solid-State Batteries. ACS Appl. Mater. Interfaces 2017, 9, 12461−
12468.
Powder Synthesis to Ceramic Materials. Angew. Chem., Int. Ed. Engl.
1991, 30, 1579−1597.
(26) Hofman-Bang, N.; et al. Preparation of Lithium Azide. Acta
Chem. Scand. 1957, 11, 581−582.
(27) Sheldrick, G. M. SADABS, version 2: Multi-Scan Absorption
Correction; Bruker-AXS: Billerica, MA, 2012.
(28) Sheldrick, G. M. SHELXS-97: A Program for Crystal Structure
(10) Pagano, S.; Lupart, S.; Schmiechen, S.; Schnick, W. Li4Ca3Si2N6
and Li4Sr3Si2N6 − Quaternary Lithium Nitridosilicates with Isolated
[Si2N6]10− Ions. Z. Anorg. Allg. Chem. 2010, 636, 1907−1909.
(11) Wagatha, P.; Pust, P.; Weiler, V.; Wochnik, A. S.; Schmidt, P. J.;
Scheu, C.; Schnick, W. Ca18.75Li10.5[Al39N55]:Eu2+Supertetrahedron
Phosphor for Solid-State Lighting. Chem. Mater. 2016, 28, 1220−
1226.
̈
̈
Solution; University of Gottingen: Gottingen, Germany, 1997.
(29) Sheldrick, G. M. SHELXL-97: A Program for Crystal Structure
̈
̈
Refinement; University of Gottingen: Gottingen, Germany, 1997.
(30) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr.,
Sect. A: Found. Crystallogr. 2008, 64, 112−122.
(31) Rietveld, H. A profile refinement method for nuclear and
magnetic structures. J. Appl. Crystallogr. 1969, 2, 65−71.
(32) Coelho, A. A. TOPAS 4.1: A program for Rietveld refinement;
Coelho Software: Brisbane, Australia, 2007.
(33) Bergmann, J.; Kleeberg, R.; Haase, A.; Breidenstein, B.
Advanced Fundamental Parameters Model for Improved Profile
Analysis. Mater. Sci. Forum 2000, 347−349, 303−308.
(34) Cheary, R. W.; Coelho, A. A.; Cline, J. P. Fundamental
Parameters Line Profile Fitting in Laboratory Diffractometers. J. Res.
Natl. Inst. Stand. Technol. 2004, 109, 1−25.
(12) Pust, P.; Weiler, V.; Hecht, C.; Tucks, A.; Wochnik, A. S.;
̈
Henß, A.-K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W.
Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation
LED-phosphor material. Nat. Mater. 2014, 13, 891−896.
(13) Wilhelm, D.; Baumann, D.; Seibald, M.; Wurst, K.; Heymann,
G.; Huppertz, H. Narrow-Band Red Emission in the Nitridolithoa-
luminate Sr4[LiAl11N14]:Eu2+. Chem. Mater. 2017, 29, 1204−1209.
(14) Li, Y. Q.; Hirosaki, N.; Xie, R. J.; Takeka, T.; Mitomo, M.
Crystal, electronic structures and photoluminescence properties of
rare-earth doped LiSi2N3. J. Solid State Chem. 2009, 182, 301−311.
(35) Le Bail, A.; Jouanneaux, A. A Qualitative Account for
Anisotropic Broadening in Whole-Powder-Diffraction-Pattern Fitting
by Second-Rank Tensors. J. Appl. Crystallogr. 1997, 30, 265−271.
(36) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid
metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 558.
(15) Strobel, P.; Schmiechen, S.; Siegert, M.; Tucks, A.; Schmidt, P.
̈
J.; Schnick, W. Narrow-Band Green Emitting Nitridolithoalumosili-
cate Ba[Li2(Al2Si2)N6]:Eu2+ with Framework Topology whj for LED/
LCD-Backlighting Applications. Chem. Mater. 2015, 27, 6109−6115.
I
Inorg. Chem. XXXX, XXX, XXX−XXX