C O M M U N I C A T I O N S
Figure 2. UV absorbance of Sc[(+)-1]2 as a function of the enantiomeric
composition of valine 2 at three different concentrations (blue, calibration;
red, actual measurements).
2
solution. Using racemic and enantiopure Sc[N,N′-dioxide 1] in two
competitive binding assays, we observed superior sensitivity and a
wider application spectrum compared to that in previously reported
fluorescence assays. The intrinsic sensitivity and selectivity of this
new sensor simplifies quantitative analysis of minute sample
amounts. We believe that our method combines several attractive
features: it is suitable for microanalysis of a wide range of chiral
compounds; it allows determination of both concentration and
enantiomeric excess; it depends on two simple assays that provide
accurate results; it avoids substrate derivatization, and it utilizes
sensitive UV-vis spectroscopy, minimizing solvent waste.
Figure 1. Enantioselective UV sensing. Left: UV-vis spectra of Sc[(+)-
]2 obtained by titration with (R)-valine. Right: UV sensing of the
enantiomers of valine using Sc[(+)-1]2 and Sc[(-)-1]2. The sensor
concentration was 0.98 × 10 M in acetonitrile:H2O (1:1).
Chart 1. Substrates Tested
1
-
5
Acknowledgment. Funding from the National Science Founda-
tion (CAREER Award, CHE-0347368) and the Petroleum Research
Fund (PRF40897-G4) is gratefully acknowledged.
that Beer’s law is followed by all UV-active species (see Supporting
Supporting Information Available: Synthesis of 1 and details of
all UV and MS experiments. This material is available free of charge
via the Internet at http://pubs.acs.org.
Information).13 Accordingly, the first N,N′-dioxide ligand of Sc-
2
[(+)-1] is more readily replaced by the (S)-enantiomer of valine
because Sc[(+)-1(S)-2] is more stable than Sc[(+)-1(R)-2]. As a
result, ligand exchange occurs at lower concentrations of (S)-2 than
with (R)-2, which explains the enantioselective decrease of the
intensity of the charge transfer absorption at 410 nm shown in
Figure 1.
We then decided to develop a method that allows accurate
measurements of both the total amount and the enantiomeric excess
of chiral compounds. We found that this can be accomplished by
combination of two simple assays. First, the total concentration of
a chiral substrate is analyzed by UV-vis sensing with racemic Sc-
References
(
1) (a) Guo, J.; Wu, J.; Siuzdak, G.; Finn, M. G. Angew. Chem., Int. Ed.
1
999, 38, 1755-1758. (b) Reetz, M. T.; Becker, M. H.; Klein, H.-W.;
Stockigt, D. Angew. Chem., Int. Ed. 1999, 38, 1758-1761. (c) Markert,
C.; Pfaltz, A. Angew. Chem., Int. Ed. 2004, 43, 2498-2500.
(2) (a) Eelkema, R.; van Delden, R. A.; Feringa, B. L. Angew. Chem., Int.
Ed. 2004, 43, 5013-5016. (b) Zhu, L.; Anslyn, E. V. J. Am. Chem. Soc.
2
004, 126, 3676-3677. (c) Zhu, L.; Zhong, Z.; Anslyn, E. V. J. Am.
Chem. Soc. 2005, 127, 4260-4269. (d) Folmer-Andersen, J. F.; Lynch,
V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 7986-7987.
(3) (a) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Nature 1995,
3
1
2
2
74, 345-347. (b) Yan, Y.; Myrick, M. L. Anal. Chem. 1999, 71, 1958-
962. (c) Beer, G.; Rurack, K.; Daub, J. J. Chem. Soc., Chem. Commun.
001, 1138-1139. (d) Reetz, M.; Sostmann, S. Tetrahedron 2001, 57,
515-2520. (e) Zhao, J.; Fyles, T. M.; James, T. D. Angew. Chem., Int.
2
(N,N′-dioxide 1) . As expected, addition of either enantiomer of
valine to a solution of the racemic sensor affords superimposable
UV titration curves which can be exploited for quantitative
nonstereoselective analysis (Supporting Information). The enan-
tiopure scandium complex is then used to uncover the enantiomeric
composition in a succeeding assay. To evaluate the accuracy and
reproducibility of this method, we prepared nine micromolar
samples of valine, camphanic acid, R-cyclohexylethylamine, and
threoninol having different concentrations and enantiopurities
ranging from 15 to 95%. The UV signal of the racemic Sc complex
in the presence of each sample was then measured and compared
to a calibration curve for determination of the individual concentra-
tions.
Ed. 2004, 43, 3461-3464. (f) Pu, L. Chem. ReV. 2004, 104, 1687-1716.
(g) Li, Z.-B.; Lin, J.; Qin, Y.-C.; Pu, L. Org. Lett. 2005, 7, 3441-3444.
(
h) Li, Z.-B.; Lin, J.; Pu, L. Angew. Chem., Int. Ed. 2005, 44, 1690-
1
693.
(4) Reetz, M. T.; Becker, M. H.; Kuhling, K. M.; Holzwarth, A. Angew.
Chem., Int. Ed. 1998, 37, 2647-2650.
(
5) Ding, K.; Shii, A.; Mikami, K. Angew. Chem., Int. Ed. 1999, 38, 497-
501.
(
6) Evans, M. A.; Morken, J. P. J. Am. Chem. Soc. 2002, 124, 9020-9021.
7) Reetz, M. T.; Kuhling, K. M.; Deege, A.; Hinrichs, H.; Belder, D. Angew.
Chem., Int. Ed. 2000, 39, 3891-3893.
(
(8) (a) Abato, P.; Seto, C. T. J. Am. Chem. Soc. 2001, 123, 9206-9207. (b)
Taran, F.; Gauchet, C.; Mohar, B.; Meunier, S.; Valleix, A.; Renard, P.
Y.; Creminon, C.; Grassi, J.; Wagner, A.; Mioskowski, C. Angew. Chem.,
Int. Ed. 2002, 41, 124-127. (c) Matsushita, M.; Yoshida, K.; Yamamoto,
N.; Wirsching, P.; Lerner, R. A.; Janda, K. D. Angew. Chem., Int. Ed.
Having determined sample concentrations, we were then able
2003, 42, 5984-5987.
to reveal enantiomeric compositions using enantiopure Sc[(+)-1]
2
(9) (a) Mei, X.; Wolf, C. Chem. Commun. 2004, 2078-2079. (b) Mei, X.;
Wolf, C. J. Am. Chem. Soc. 2004, 126, 14736-14737. (c) Tumambac,
G. E.; Wolf, C. Org. Lett. 2005, 7, 4045-4048. (d) Mei, X.; Martin, R.
M.; Wolf, C. J. Org. Chem. 2006, 71, 2854-2861.
in essentially the same UV experiment. In all cases, results obtained
by our UV-vis sensing method were in excellent agreement with
actual values (Figure 2 and Supporting Information). For example,
the measured (actual) total concentration and amount of (R)-
(
10) Pagliari, S.; Corradini, R.; Galaverna, G.; Sforza, S.; Dossena, A.; Montalti,
M.; Prodi, L.; Zaccheroni, N.; Marchelli, R. Chem.sEur. J. 2004, 10,
2749-2758.
-
5
-5
(11) (a) Carlin, R. L. J. Am. Chem. Soc. 1961, 83, 3773-3775. (b) Karayannis,
N. M.; Pytlewski, L. L.; Mikulski, C. M. Coord. Chem. ReV. 1973, 11,
enantiomer of a valine sample were 1.58 × 10 M (1.60 × 10
M) and 97% (95%). The data demonstrate the high reproducibility
and accuracy of this method which is applicable to the screening
of samples exhibiting a wide range of enantiopurity.
93-159.
(12) (a) Sovago, I.; Kiss, T.; Gergely, A. Pure Appl. Chem. 1993, 65, 1029-
1080. (b) Yamauchi, O.; Odani, A. Pure Appl. Chem. 1995, 68, 469-
496.
In summary, we have developed a practical UV-vis sensing
method for enantioselective microanalysis of unprotected amino
acids, amines, amino alcohols, and carboxylic acids in aqueous
(13) Connors, K. A. Binding Constants; Wiley & Sons: New York 1987; pp
147-168.
JA0636486
J. AM. CHEM. SOC.
9
VOL. 128, NO. 41, 2006 13327