Journal of the American Chemical Society p. 6371 - 6379 (2011)
Update date:2022-08-28
Topics:
Lemouchi, Cyprien
Vogelsberg, Cortnie S.
Zorina, Leokadiya
Simonov, Sergey
Batail, Patrick
Brown, Stuart
Garcia-Garibay, Miguel A.
As a point of entry to investigate the potential of halogen-bonding interactions in the construction of functional materials and crystalline molecular machines, samples of 1,4-bis(iodoethynyl)bicyclo[2.2.2]octane (BIBCO) were synthesized and crystallized. Knowing that halogen-bonding interactions are common between electron-rich acetylenic carbons and electron-deficient iodines, it was expected that the BIBCO rotors would be an ideal platform to investigate the formation of a crystalline array of molecular rotors. Variable temperature single crystal X-ray crystallography established the presence of a halogen-bonded network, characterized by lamellarly ordered layers of crystallographically unique BIBCO rotors, which undergo a reversible monoclinic-to-triclinic phase transition at 110 K. In order to elucidate the rotational frequencies and the activation parameters of the BIBCO molecular rotors, variable-temperature 1H wide-line and 13C cross-polarization/magic-angle spinning solid-state NMR experiments were performed at temperatures between 27 and 290 K. Analysis of the 1H spin-lattice relaxation and second moment as a function of temperature revealed two dynamic processes simultaneously present over the entire temperature range studied, with temperature-dependent rotational rates of krot = 5.21 × 1010 s-1·exp(-1.48 kcal·mol -1/RT) and krot= 8.00 × 1010 s -1·exp(-2.75 kcal·mol-1/RT). Impressively, these correspond to room temperature rotational rates of 4.3 and 0.8 GHz, respectively. Notably, the high-temperature plastic crystalline phase I of bicyclo[2.2.2]octane has a reported activation energy of 1.84 kcal·mol-1 for rotation about the 1,4 axis, which is 24% larger than Ea = 1.48 kcal·mol-1 for the same rotational motion of the fastest BIBCO rotor; yet, the BIBCO rotor has three fewer degrees of translational freedom and two fewer degrees of rotational freedom! Even more so, these rates represent some of the fastest engineered molecular machines, to date. The results of this study highlight the potential of halogen bonding as a valuable construction tool for the design and the synthesis of amphidynamic artificial molecular machines and suggest the potential of modulating properties that depend on the dielectric behavior of crystalline media.
View Morewebsite:http://www.joyochem.com
Contact:0531-82687558, 0531-82687998
Address:Factory Building 11, Jinan Comprehensive free trade zone, Shandong, China
Contact:732.938.2777
Address:5012 Industrial Road Farmingdale, NJ 07727
Lianyungang Yunbo Chemical Co.,Ltd.
Contact:518-81066110
Address:B907,Dongsheng"Mingdu Square,21-2 East Chaoyang Road,Xinpu,(sale department)
Zhuhai Rundu Pharmaceutical co.,Ltd
Contact:+86-756-7630755
Address:No.6,North Airport Road,Sanzao Town,Jinwan District
Yancheng Creator Chemical Co., Ltd
Contact:0086-515-88710008 88710068 88710858 88710868
Address:No.21 Renming Road, Longgang Town, Yandu County,Yancheng City
Doi:10.1016/j.molcata.2014.04.033
(2014)Doi:10.1007/BF01185719
(1985)Doi:10.1007/s10847-012-0261-2
(2013)Doi:10.1021/jo00186a020
(1984)Doi:10.2298/JSC110507176G
(2012)Doi:10.1039/J19660000166
()