Angewandte
Chemie
miya, Y. Aso, T. Otsubo, J. Am. Chem. Soc. 2003, 125, 5286 –
5287.
dendrimeric wedges located at both ends of the backbone
(red), while the signals at d = 7.93 and 7.92 ppm are from the
other dendrimeric substituents (blue). We measured spin–
spin relaxation times (T2) of these characteristic signals
(Figure 5), and found that the T2 value of the signal at d =
7.92 ppm is smaller when the degree of polymerization n is
larger, and reaches a plateau at n = 10 (blue bars; the T2 value
of the signal at d = 7.93 ppm is shown for G3-2). In sharp
contrast, the T2 value of the signal at d = 7.97 ppm, which
arises from the dendron units at the edges of the backbone
(red), is virtually unchanged by n (red bars). These contrast-
ing results suggest that the molecular motions of the inner
dendrimeric wedges, which are densely aligned along the
rigid, conjugated backbone, are highly constrained as a
consequence of intramolecular van der Waals interactions.
In contrast, the T2 values of the corresponding signals in
lower-generation G1[sBu]-n were only slightly dependent on
n.[7,17]
In summary, we have reported the first example of
discrete conjugated wires G3-n bearing large dendrimeric
substituents. A great advantage of the dendrimeric architec-
ture is that it allows for the synthesis and isolation of a 147-nm
long discrete wire (G3-64), in which the conjugated backbone
consisting of 192 aromatic rings and 256 triple bonds is
wrapped in a thick dendrimeric envelope. Comparative
photochemical studies with lower-generation G1[sBu]-n as
reference compounds indicate that the conjugated backbone
in G3-n tends to adopt a planar conformation, most probably
because of intramolecular van der Waals interactions
between the large, densely aligned G3 dendrimeric wedges.
The planar conformation of the backbone allows efficient
electronic conjugation of the chromophores and low fluores-
cence depolarization in an exciton migration event. Applica-
tion of such insulated nanowires to molecular electronics and
photonics is one of the interesting subjects worthy of further
investigations.
[3] a) T. Sato, D.-L. Jiang, T. Aida, J. Am. Chem. Soc. 1999, 121,
10658 – 10659; b) S. Masuo, H. Yoshikawa, T. Asahi, H.
Masuhara, T. Sato, D.-L. Jiang, T. Aida, J. Phys. Chem. B 2001,
105, 2885 – 2889.
[4] For examples of other conjugated polymers with dendrimeric
wedges, see a) B. Karakaya, W. Clausssen, K. Gesseler, W.
Saenger, A. D. Schlüter, J. Am. Chem. Soc. 1997, 119, 3296 –
3301; b) Z. Bao, K. R. Amundson, A. J. Lovinger, Macromole-
cules 1998, 31, 8647 – 8649; c) P. R. L. Malenfant, L. Groenen-
daal, J. M. J. FrØchet, J. Am. Chem. Soc. 1998, 120, 10990 –
10991; d) A. D. Schlüter J. P. Rabe, Angew. Chem. 2000, 112,
860 – 880; Angew. Chem. Int. Ed. 2000, 39, 864 – 883, and
references therein.
[5] The coupling reaction of G3-DEB took place very sluggishly and
gave only very small amounts of higher oligomers.
[6] a) S. Hecht, J. M. J. FrØchet, Angew. Chem. 2001, 113, 76 – 94;
Angew. Chem. Int. Ed. 2001, 40, 74 – 91; b) S. Spange, Angew.
Chem. 2003, 115, 4568 – 4570; Angew. Chem. Int. Ed. 2003, 42,
4430 – 4432; c) D. J. Cardin, Adv. Mater. 2002, 14, 553 – 556.
[7] See the Supporting Information.
[8] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. 2000,
112, 2740 – 2767; Angew. Chem. Int. Ed. 2000, 39, 2632 – 2657.
[9] The molecular lengths of Gm-n, as estimated by an MM2 module
implemented in the Chem. 3D software package, were 9 (n = 4),
18 (n = 8), 27 (n = 12), 36 (n = 16), 55 (n = 24), 74 (n = 32), and
147 nm (n = 64).
[10] F. A. Bovey, Nuclear Magnetic Resonance Spectroscopy, 2nd ed.,
Academic Press, New York, 1988, pp. 255 – 324.
[11] By reference to a quinine sulfate solution (1.0n, A350nm = 0.06,
FFL = 55% upon 350 nm excitation) according to a method
reported in: R. P. Haugland, J. Yguerabide, L. Stryer, Proc. Natl.
Acad. Sci. USA 1969, 63, 23 – 30.
[12] I. Sluch, A. Godt, U. H. F. Bunz, M. A. Berg, J. Am. Chem. Soc.
2001, 123, 6447 – 6448.
[13] A. Rose, C. G. Lugmair, T. M. Swager, J. Am. Chem. Soc. 2001,
123, 11298 – 11299.
[14] C. F. Wang, J. D. White, T. L. Lim, J. H. Hsu, S. C. Yang, W. S.
Fann, K. Y. Peng, S. A. Chen, Phys. Rev. B 2003, 67, 035202.
[15] T. Miteva, L. Palmer, L. Kloppenburg, D. Neher, U. H. F. Bunz,
Macromolecules 2000, 33, 652 – 654.
[16] a) W.-D. Jang, D.-L. Jiang, T. Aida, J. Am. Chem. Soc. 2000, 122,
3232 – 3233; b) M. Enomoto, A. Kishimura, T. Aida, J. Am.
Chem. Soc. 2001, 123, 5608 – 5609; c) V. Percec, M. Glodde, T. K.
Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Bala-
gurusamy, P. A. Heiney, I. Schnell, A. Rapp, H.-W. Spiess, S. D.
Hudson, H. Duan, Nature 2002, 417, 384 – 387; d) T. Fujigaya, D.-
L. Jiang, T. Aida, J. Am. Chem. Soc. 2003, 125, 14690 – 14691.
[17] The slow spin–spin relaxation of the focal aromatic rings in G3-1
(Figure 1) suggests the large G3 dendrimeric wedges could also
affect the conformation of such a short-chain conjugated back-
bone on steric grounds.
Received: December 12, 2003 [Z53519]
Keywords: conjugation · dendrimers · exciton migration ·
.
luminescence · molecular wires
[1] a) J. M. Tour, Chem. Rev. 1996, 96, 537 – 553; b) R. E. Martin, F.
Diederich, Angew. Chem. 1999, 111, 1440 – 1469; Angew. Chem.
Int. Ed. 1999, 38, 1350 – 1377; c) D. T. McQuade, A. E. Pullen,
T. M. Swager, Chem. Rev. 2000, 100, 2537 – 2574.
[2] For examples of conjugated oligomers with discrete molecular
lengths, see a) poly(phenyleneethynylene): J. S. Schumm, D. L.
Pearson, J. M. Tour, Angew. Chem. 1994, 106, 1445 – 1449;
Angew. Chem. Int. Ed. Engl. 1994, 33, 1360 – 1364; b) polyphe-
nylene: M. Remmers, B. Müller, K. Martin, H. J. Räder,
Macromolecules 1999, 32, 1073 – 1079; c) polyporphyrin: N.
Aratani, A. Osuka, Y. H. Kim, D. H. Jeong, D. Kim, Angew.
Chem. 2000, 112, 1517 – 1521; Angew. Chem. Int. Ed. 2000, 39,
1458 – 1462; d) poly(phenylenevinylene): M. S. Wong, Z. H. Li,
M. F. Shek, K. H. Chow, Y. Tao, M. D'Iorio, J. Mater. Chem.
2000, 10, 1805 – 1810; e) polyacetylene: M. J. Edelmann, M. A.
Estermann, V. Gramlich, F. Diederich, Helv. Chim. Acta 2001,
84, 473 – 480; f) polythiophene: T. Izumi, S. Kobashi, K. Taki-
Angew. Chem. Int. Ed. 2004, 43, 2943 –2947
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2947