Table 1 Samarium(II)-mediated aryl coupling reactiona
selectively obtained (entries 4 and 5, Table 1). This is presumably
due to the unfavourable steric interaction in the rearrangement of
14 to 16 as shown in the structure 17, which provides more time
to 14 for the SET and the subsequent protonation without
rearrangement to 16.
In conclusion, we have demonstrated a reductive cyclisation of
aryl radicals onto an aromatic ring mediated by SmI2/HMPA in
the presence of i-PrOH. This is the first example of the highly
selective synthesis of spirocycles by the aryl radical addition onto a
benzene ring.
Notes and references
1 (a) W. L. Carrick, G. L. Karapinka and G. T. Kwiatkowski, J. Org.
Chem., 1969, 34, 2388–2392; (b) E. C. Taylor and F. Kienzle, J. Am.
Chem. Soc., 1970, 92, 6088–6089; (c) M. Tanaka, C. Mukaiyama,
H. Mitsuhashi, M. Maruno and T. Wakamatsu, J. Org. Chem., 1995, 60,
4339–4352, and references cited therein; (d) Recently, hypervalent
iodine(III)-mediated biaryl coupling reaction has also been reported:
H. Tohma, H. Morioka, S. Takizawa, M. Arisawa and Y. Kita,
Tetrahedron, 2001, 57, 345–352.
2 (a) N. S. Narasimhan and I. S. Aidhen, Tetrahedron Lett., 1988, 29,
2987–2988; (b) W. R. Bowman, H. Heaney and B. M. Jordan,
Tetrahedron, 1991, 47, 10119–10128; (c) A. K. Ganguly, C. H. Wang,
M. David, P. Bartner and T. M. Chan, Tetrahedron Lett., 2002, 43,
6865–6868.
3 (a) M. Black, J. I. G. Cadogan and H. McNab, J. Chem. Soc., Chem.
Commun., 1990, 395–396; (b) D. C. Harrowven and M. I. T. Nunn,
Tetrahedron Lett., 1998, 39, 5875–5876; (c) A. Fiumana and K. Jones,
Tetrahedron Lett., 2000, 41, 4209–4211; (d) W. Zhang and G. Pugh,
Tetrahedron, 2003, 59, 3009–3018; (e) For an intermolecular
reaction: V. Mart´ınez-Barrasa, A. Garc´ıa de Viedma, C. Burgos and
J. Alvarez-Builla, Org. Lett., 2000, 2, 3933–3935.
Product yield (%)
i-PrOH
R2 R3 (equiv.) T/uC 10 11
Entry Substrate R1
12
1
2
9a
9a
9a
9b
9c
9d
9e
9a
9b
9c
9d
9e
H
H
H
H
H
H
H
Me
H
H
H
H
H
H
H
H
H
Me
H
H
2
20
2
2
2
2
2
0
0
0
0
34
39
0
0
0
0
0
trace
28
30
6
3
H
235 36
235 89
235 89
235 29
235 31
4
5
6
Me
OMe
H
9
0
0
65
53b
0
0
0
7
H
8
H
0
0
0
0
0
0
0
0
0
0
26
26
15
29c
60
9
Me
OMe
H
10
11
12
H
Me
H
H
H
Me
0
0
0
0
0
H
a All the reactions were carried out in THF using SmI2 (5 equiv.)
and HMPA (18 equiv.). b Obtained as a mixture of regioisomers
(1:1). c Obtained as a mixture of regioisomers (2:1).
4 (a) E. Bonfand, L. Forslund, W. B. Motherwell and S. Va´zquez, Synlett,
2000, 475–478; (b) A. Studer, M. Bossart and T. Vasella, Org. Lett.,
2000, 2, 985–988; (c) D. C. Harrowven, M. I. T. Nunn, N. A. Newman
and D. R. Fenwick, Tetrahedron Lett., 2001, 42, 961–964; (d)D.L.J.Clive
and S. Kang, J. Org. Chem., 2001, 66, 6083–6091; (e) R. Leardini,
H. McNab, M. Minozzi and D. Nanni, J. Chem. Soc., Perkin Trans. 1,
2001, 1072–1078; (f) For a recent review, see: A. Studer and M. Bossart,
Tetrahedron, 2001, 57, 9649–9667.
5 (a) D. H. Hey, G. H. Jones and M. J. Perkins, J. Chem. Soc. (C), 1971,
116–122; (b) C. Escolano and K. Jones, Tetrahedron Lett., 2000, 41,
8951–8955.
6 (a) W. Zhang and G. Pugh, Tetrahedron Lett., 2001, 42, 5613–5615;
(b) S. Caddick, K. Aboutayab, K. Jenkins and R. I. West, J. Chem. Soc.,
Perkin Trans 1, 1996, 675–682; (c) D. C. Harrowven, N. L’Helias,
J. D. Moseley, N. J. Blumire and S. R. Flanagan, Chem. Commun., 2003,
2658–2659.
7 (a) L. Benati, P. Spagnolo, A. Tundo and G. Zanardi, J. Chem. Soc.,
Chem. Commun., 1979, 141–143; (b) W. B. Motherwell and
A. M. K. Pennell, J. Chem. Soc., Chem. Commun., 1991, 877–879;
(c) M. L. E. N. da Mata, W. B. Motherwell and F. Ujjainwalla,
Tetrahedron Lett., 1997, 38, 137–140; (d) A. M. Rosa, A. M. Lobo,
P. S. Branco and S. Prabhakar, Tetrahedron, 1997, 53, 285–298;
(e) L. Giraud, E. Lacoˆte and P. Renaud, Helv. Chim. Acta, 1997, 80,
2148–2156; (f) D. Crich and J.-T. Hwang, J. Org. Chem., 1998, 63, 2765–
2770; (g) B. Alcaide and A. Rodr´ıguez-Vicente, Tetrahedron Lett., 1998,
39, 6589–6592; (h) W. R. Bowman, E. Mann and J. Parr, J. Chem. Soc.,
Perkin Trans. 1, 2000, 2991–2999; (i) A. Ryokawa and H. Togo,
Tetrahedron, 2001, 57, 5915–5921.
Scheme 3 A plausible mechanistic pathway.
8 M. Sannigrahi, Tetrahedron, 1999, 55, 9007–9071.
9 For a recent excellent review on samarium(II) chemistry, see:H. B. Kagan,
Tetrahedron, 2003, 59, 10351–10372.
14. Further SET by SmI2 and the protonation of the resulting
cyclohexadienyl anion 15 by i-PrOH affords the spirocyclic 1,4-
cyclohexadiene 10. In contrast, rearrangement of the unstable
intermediate 14 to the fused ring 16 followed by SET and the
subsequent protonation would give the reduced fused ring 12,
while, in the absence of i-PrOH, the hydrogen abstraction from 16
yields aromatized product 11. The presence of i-PrOH would
promote the SET to 16, by trapping the anionic intermediate.11b
When the ortho-substituted benzamide derivatives 9b and 9c
(R1LMe or OMe) were used, the spirocycles 10b and 10c were
10 (a) T. Tanaka, R. Wakayama, S. Maeda, H. Mikamiyama, N. Maezaki
and H. Ohno, Chem. Commun., 2000, 1287–1288; (b) H. Ohno,
R. Wakayama, S. Maeda, H. Iwasaki, M. Okumura, C. Iwata,
H. Mikamiyama and T. Tanaka, J. Org. Chem., 2003, 68, 5909–5919.
11 (a) H. Ohno, S. Maeda, M. Okumura, R. Wakayama and T. Tanaka,
Chem. Commun., 2002, 316–317; (b) H. Ohno, M. Okumura, S. Maeda,
H. Iwasaki, R. Wakayama and T. Tanaka, J. Org. Chem., 2003, 68,
7722–7732.
12 C.-C. Yang, H.-T. Chang and J.-M. Fang, J. Org. Chem., 1993, 58,
3100–3105.
C h e m . C o m m u n . , 2 0 0 4 , 2 2 2 8 – 2 2 2 9
2 2 2 9