10.1002/chem.201700666
Chemistry - A European Journal
DOI: 10.1002/chem.201xxxxxx
TPEN)MnIV(O)]2+ (1) with substrates or with a UNISOKU RSP-601
stopped-flow spectrometer equipped with a MOS-type highly
sensitive photodiode-array for the reactions of [(Bn-
TPEN)MnIV(O)-(Sc(OTf)3)2]2+ (2) with substrates. Cold spray
ionization (CSI) mass spectra were collected on a JMS-T100CS
(JEOL) mass spectrometer equipped with a CSI source. Typical
measurement conditions are as follows: needle voltage, 2.2 kV;
orifice 1 current, 50 – 500 nA; orifice 1 voltage, 0 to 20 V; ringlens
voltage, 10 V; ion source temperature, 5 °C; spray temperature, –
40 °C. Electrospray ionization mass spectra (ESI-MS) were col-
lected on a Thermo Finnigan (San Jose, CA, USA) LCQTM Ad-
vantage MAX quadrupole ion trap instrument, by infusing sam-
ples directly into the source at 20 μL/min using a syringe pump.
The spray voltage was set at 4.7 kV and the capillary temperature
at 120 °C. X-band electron paramagnetic resonance (EPR) spec-
tra were taken at 77 K using a JEOL X-band spectrometer (JES-
FA100). The experimental parameters for EPR measurements
with a JES-FA100 were as follows: microwave frequency = 9.028
GHz, microwave power = 1.0 mW, modulation amplitude = 1.0
mT, modulation frequency = 100 kHz and time constant = 0.03 s.
1H nuclear magnetic resonance (NMR) spectra were measured
with a Bruker model digital AVANCE III 400 FT-NMR spectrome-
ter. Product analysis was performed with an Agilent Technologies
6890N gas chromatograph (GC). Electrochemical measurements
were performed on a CHI630B electrochemical analyzer in a
trifluoroethanol (TFE) and acetonitrile (MeCN) mixture solvent (v/v
= 1:1) containing 0.1 M n-Bu4NPF6 (TBAPF6) as a supporting
electrolyte at 298 K. A conventional three-electrode cell was used
with a platinum working electrode (surface area of 0.3 mm2), a
platinum wire as a counter electrode and an Ag/Ag(NO3) (0.01 M)
electrode as a reference electrode. The platinum working elec-
trode (BAS) was routinely polished with BAS polishing alumina
suspension and rinsed with acetone and acetonitrile before use.
The measured potentials were recorded with respect to an
Ag/AgNO3 (0.01 M) reference electrode. All potentials (vs.
Ag/Ag+) were converted to values vs. SCE by adding 0.29 V.[35]
All electrochemical measurements were carried out under Ar
atmosphere.
[1]
a) L. Hammarström, Acc. Chem. Res. 2015, 48, 840; b) L. Duan, L.
Wang, F. Li, F. Li, L. Sun, Acc. Chem. Res. 2015, 48, 2084; c) K. J. Young, B. J.
Brennan, R. Tagore, G. W. Brudvig, Acc. Chem. Res. 2015, 48, 567.
[2]
a) M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T.
Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen, Nature 2015, 517,
99; b) Y. Umena, K. Kawakami, J.–R, Shen, N. Kamiya, Nature, 2011, 473, 55.
[3]
a) J. Yano, V. Yachandra, Chem. Rev. 2014, 114, 4175; b) H. Ogata, W.
Lubitz, Angew. Chem. Int. Ed. 2014, 53, 13007; c) N. Cox, D. A. Pantazis, F.
Neese, W. Lubitz, Acc. Chem. Res. 2013, 46, 1588.
[4]
X. Sala, S. Maji, R. Bofill, J. Garcia-Anton, L. Escriche, A. Llobet, Acc.
Chem. Res. 2014, 47, 504.
[5]
[6]
M. M. Abu-Omar, Dalton Trans. 2011, 40, 3435.
J. M. Sumliner, H. Lv, J. Fielden, Y. V. Geletii, C. L. Hill, Eur. J. Inorg.
Chem. 2014, 635.
[7]
Q. Zenga, F. W. Lewis, L. M. Harwood, F. Hartl, Coord. Chem. Rev.
2015, 304-305, 88.
[8]
M. Murakami, D. Hong, T. Suenobu, S. Yamaguchi, T. Ogura, S.
Fukuzumi, J. Am. Chem. Soc. 2011, 133, 11605.
[9]
M. Okamura, M. Yoshida, R. Kuga, K. Sakai, M. Kondo, S. Masaoka,
Dalton Trans. 2012, 41, 13081.
[10] Y. Hirai, T. Kojima, Y. Mizutani, Y. Shiota, K. Yoshizawa, S. Fukuzumi,
Angew. Chem. Int. Ed. 2008, 47, 5772.
[11] K. Eda, T. Osakai, Inorg. Chem. 2015, 54, 2793.
[12] S. Fukuzumi, I. Nakanishi, K. Tanaka, J Phys. Chem. A 1999, 103,
11212.
[13] a) H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2004, 126,
15999; b) H. Kotani, K. Ohkubo, S. Fukuzumi, Appl. Catal. B: Environ. 2008, 77,
317.
[14] S. P. de Visser, K. Oh, A.–R. Han, W. Nam, Inorg. Chem. 2007, 46, 4632.
[15] S. C. Sawant, X. Wu, J. Cho, K.–B. Cho, S. H. Kim, M. S. Seo, Y.-M. Lee,
M. Kubo, T. Ogura, S. Shaik, W. Nam, Angew. Chem. Int. Ed. 2010, 49, 8190.
[16] H. Yoon, Y. Morimoto, Y.–M. Lee, W. Nam, S. Fukuzumi, Chem.
Commun. 2012, 48, 11187.
[17] H. Yoon, Y.–M. Lee, X. Wu, K.–B. Cho, R. Sarangi, W. Nam, S. Fu-
kuzumi, J. Am. Chem. Soc. 2013, 135, 9186.
[18] J. Chen, Y.-M. Lee, K. M. Davis, X. Wu, M. S. Seo, K.-B. Cho, H. Yoon,
Y. J. Park, S. Fukuzumi, Y. N. Pushkar, W. Nam, J. Am. Chem. Soc. 2013, 135,
6388.
[19] a) W. Nam, Y.-M. Lee, S. Fukuzumi, Acc. Chem. Res. 2014, 47, 1146; b)
Yin, G. Acc. Chem. Res. 2013, 46, 483; c) Ray, K.; Pfaff, F. F.; Wang, B.; Nam,
W. J. Am. Chem. Soc. 2014, 136, 13942; d) Ray, K.; Heims, F.; Schwalbe, M.;
Nam, W. Curr. Opin. Chem. Biol. 2015, 25, 159; e) Chen, Z.; Yin, G. Chem. Soc.
Rev. 2015, 44, 1083; f) Nam, W. Acc. Chem. Res. 2015, 48, 2415; g) Cook, S.
A.; Hill, E. A.; Borovik, A. S. Biochemistry 2015, 54, 4167.
18O-labeled Experiments
[20] a) S. A. Cook, A. S. Borovik, Acc. Chem. Res. 2015, 48, 2407; b) M. Puri,
L. Que, Jr., Acc. Chem. Res. 2015, 48, 2443; c) H. M. Neu, R. A. Baglia, D. P.
Goldberg, Acc. Chem. Res. 2015, 48, 2754.
[(Bn-TPEN)MnIV(18O)]2+ (1-18O) was prepared by adding PhI18O (4
equiv), which was prepared by adding H218O (98%, 10 μL) to
PhI16O solution (80 μL), to a TFE/MeCN (v/v = 1:1) solution of
[(Bn-TPEN)MnII]2+ (2.0 mL) at 298 K. Product analysis of the
reaction solution obtained in the oxidation of anthracene (0.10
mM) by 1-18O (0.60 mM) in a TFE/MeCN (v/v = 1:1) solution was
performed by CSI mass. A sodium cation is a background ion to
improve ESI responses.
[21] a) S. Fukuzumi, K. Ohkubo, Y.-M. Lee, W. Nam, Chem.–Eur. J. 2015, 21,
17548; b) J. Park, Y.-M. Lee, W. Nam, S. Fukuzumi, J. Am. Chem. Soc. 2013,
135, 5052; c) J. Park, Y. Morimoto,Y.-M. Lee, W. Nam, S. Fukuzumi, Inorg.
Chem. 2014, 53, 3618; d) J. Park, Y.-M. Lee, K. Ohkubo, W. Nam, S. Fukuzumi,
Inorg. Chem. 2015, 54, 5806.
[22] I. M. Geraskin, O. Pavlova, H. M. Neu, M. S. Yusubov, V. N. Nemykin, V.
V. Zhdankin, Adv. Synth. Catal. 2009, 351, 733.
[23] The O•– adduct to the 9-position of anthracene radical cation, initially
produced by the O•– transfer may be rapidly converted to 9-hydroyanthracene
via intramolecular hydrogen atom transfer.
Acknowledgments
[24] H.–G. Korth, P. Mulder, J. Org. Chem. 2013, 78, 7674.
[25] K. R. Naqvi, T. B. Melø, Chem. Phys. Lett. 2006, 428, 83.
[26] J. M. Masnovi, J. K. Kochi, E. F. Hilinski, P. M. Rentzepis, J. Am. Chem.
Soc. 1986, 108, 1126.
This work was supported by a SENTAN project from Japan Sci-
ence and Technology Agency (JST) to S. F. and JSPS KAKENHI
(No. 16HO2268 to S.F.) from MEXT Japan, and NRF of Korea
through the CRI (NRF-2012R1A3A2048842) and GRL (NRF-
2010-00353) program to W.N.
[27] When the decay of the initial product is much faster than the formation of
the initial product, the rate constant of the slow formation can be determined
from the apparent slow decay; see: H. Imahori, H. Yamada, D. M. Guldi, Y.
Endo, A. Shimomura, S.; Kundu, K. Yamada, T. Okada, Y. Sakata, S. Fukuzumi,
Angew. Chem. Int. Ed. 2002, 41, 2344.
Keywords: Bioinorganic Chemistry • Manganese-Oxo Complex •
Multi-Electron Transfer • Hydrogen Atom Transfer • Anthracene
Derivatives
[28] a) R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 15, 155; b) R. A. Marcus,
6
This article is protected by copyright. All rights reserved.