A. Dippold, T. M. Klapötke, F. A. Martin
ARTICLE
Sensitivities (grain size: 100–500 μm): FS: >360 N, IS: 10 J, ESD: and inspired discussions and support of our work. We are also indebted
0.05 J.
to and thank Dr. Jörg Stierstorfer for performing quantum mechanical
and performance calculations.
G2 DNAAT (7): Yield 73 %. DSC (onset, 5 °C·min–1): TDec. = 261 °C.
1H NMR ([D6]DMSO,25 °C): δ = 13.53 (s, 2 H, Nring–H), 7.03 (s,
G+). 13C NMR ([D6]DMSO, 25 °C): δ = 167.1 (C–N=N), 157.9 (C–
N–NO2), 157.7 (G+). 14N NMR ([D6]DMSO, 25 °C): δ = –14 (–NO2).
References
[1] P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermo-
IR (ATR, 25 °C): ν = 3336 (m), 3241 (m), 3167 (m), 2790 (w), 1680
˜
chim. Acta 2002, 384, 187–204.
(m), 1635 (s), 1532 (m), 1471 (m), 1436 (m), 1391 (m), 1368 (m),
1339 (vs), 1255 (m), 1162 (m), 1085 (s), 1011 (m), 864 (w), 770 (m),
[2] T. M. Klapötke, in: Structure and Bonding (Ed.: D. M. P. Min-
gos), Springer-Verlag, Berlin Heidelberg, Germany 2007.
726 (w), 690 (w) cm–1. Raman (200 mW, 25 °C): 1536(14), [3] D. Fournier, A. Halasz, J. Spain, R. J. Spanggord, J. C. Bottaro,
J. Hawari, Appl. Environ. Microbiol. 2004, 70, 1123–1128.
[4] a) T. M. Klapötke, J. Stierstorfer, A. U. Wallek, Chem. Mater.
2008, 20, 4519–4530; b) T. M. Klapötke, C. M. Sabate, Chem.
Mater. 2008, 20, 3629–3637; c) S. Yang, S. Xu, H. Huang, W.
Zhang, X. Zhang, Huaxue 2008, 20, 526–537; d) D. E. Chavez,
M. A. Hiskey, D. L. Naud, Propellants, Explos., Pyrotech. 2004,
29, 209–215; e) Y. Huang, H. Gao, B. Twamley, J. N. M.
Shreeve, Eur. J. Inorg. Chem. 2008, 2560–2568.
1462(100), 1402(23), 1363(56), 1156(18), 1097(14), 1012(24), 917(8),
862(5), 402(5) cm–1. Elemental analysis C6H14N18O4: calcd: C 17.91,
H 3.51, N 62.67 %; found C 18.49, H 3.59, N 62.12 %. Sensitivities
(grain size: 100–500 μm): FS: >360 N, IS: >40 J, ESD: 0.35 J.
.
AG2 DNAAT (8): Yield 87 %. DSC (onset, 5 °C·min–1): TDec
=
177 °C. 1H NMR ([D6]DMSO,25 °C): δ = 13.61 (s, 2 H, Nring–H),
7.89 (s, AG+), 7.12 (s, AG+), 4.71 (s, AG+). 13C NMR ([D6]DMSO,
25 °C): δ = 167.0 (C–N=N), 157.7 (C–N–NO2), 158.9 (AG+).
14N NMR ([D6]DMSO, 25 °C): δ = –15 (–NO2). IR (ATR, 25 °C):
[5] C. M. Sabate, T. M. Klapötke, New Trends in Research of Ener-
getic Materials, Proceedings of the Seminar, 12th, Pardubice,
Czech Republic, Apr. 1–3, 2009, 172–194.
ν = 3435 (m), 3341 (m), 3252 (vs), 3183 (s), 2888 (w), 1685 (vs), [6] a) D. E. Chavez, M. A. Hiskey, R. D. Gilardi, Angew. Chem. Int.
˜
Ed. 2000, 39, 1791–1793; b) D. Chavez, L. Hill, M. Hiskey, S.
Kinkead, J. Energ. Mater. 2000, 18, 219–236.
1668 (vs), 1530 (s), 1475 (m), 1436 (m), 1386 (m), 1346 (vs), 1257
(m), 1164 (w), 1086 (s), 1009 (m), 864 (w), 770 (m), 730 (w), 692
(w) cm–1. Raman (200 mW, 25 °C): 1534(16), 1488(12), 1463(100),
1409(22), 1367(51), 1156(20), 1096(12), 1041(5), 1008(29), 918(9),
861(5), 746(4), 403(5) cm–1. Elemental analysis C6H16N20O4: calcd.:
C 16.67, H 3.73, N 64.80 %; found: C 16.87, H 3.73, N 61.97 %
Sensitivities (grain size: 100–500 μm): FS: >360 N, IS: >40 J, ESD:
0.20 J.
[7] a) T. M. Klapötke, C. M. Sabate, New J. Chem. 2009, 33, 1605–
1617; b) T. M. Klapötke, C. M. Sabate, Chem. Mater. 2008, 20,
1750–1763; c) A. Hammerl, G. Holl, T. M. Klapötke, P. Mayer,
H. Noth, H. Piotrowski, M. Warchhold, Eur. J. Inorg. Chem. 2002,
834–845.
[8] a) B. C. Tappan, A. N. Ali, S. F. Son, T. B. Brill, Propellants,
Explos., Pyrotech. 2006, 31, 163–168; b) R. Sivabalan, M. B. Tal-
awar, N. Senthilkumar, B. Kavitha, S. N. Asthana, J. Therm.
Anal. Calorim. 2004, 78, 781–792.
TAG2 DNAAT (9): Yield 85 %. DSC (onset, 5 °C·min–1): TDec
=
.
219 °C. 1H NMR ([D6]DMSO,25 °C): δ = 13.48 (s, 2 H, Nring–H), [9] M. A. Hiskey, N. Goldman, J. R. Stine, J. Energ. Mater. 1998,
8.59 (s, TAG+), 4.49 (s, TAG+). 13C NMR ([D6]DMSO, 25 °C): δ =
16, 119–127.
167.3 (C–N=N), 157.8 (C–N–NO2), 159.0 (TAG+). 14N NMR
[10] a) M. M. Chaudhri, J. Mater. Sci. Lett. 1984, 3, 565–568; b) D. J.
Whelan, R. J. Spear, R. W. Read, Thermochim. Acta 1984, 80,
149–163; c) G. O. Reddy, A. K. Chatterjee, Thermochim. Acta
1983, 66, 231–244; d) M. M. Chaudhri, Nature 1976, 263, 121–
122.
([D ]DMSO, 25 °C): δ = –14 (–NO ). IR (ATR, 25 °C): ν = 3252 (s),
˜
6
2
1682 (s), 1526 (s), 1466 (m), 1435 (s), 1315 (vs), 1250 (m), 1133 (m),
1073 (s), 1003 (m), 857 (w), 771 (w), 728 (w), 656 (w) cm–1. Raman
(200 mW, 25 °C): 1534(16), 1488(12), 1463(100), 1409(22),
1367(51), 1156(20), 1096(12), 1041(5), 1008(29), 918(9), 861(5),
746(4), 403(5) cm–1. Elemental analysis C6H20N24O4: calcd.: C 14.64,
H 4.09, N 68.27 %; found: C 15.22, H 4.37, N 66.73 %. Sensitivities
(grain size: 100–500 μm): FS: 160 N, IS: >40 J, ESD: 0.20 J.
[11] M. M. Williams, W. S. McEwan, R. A. Henry, J. Phys. Chem.
1957, 61, 261–267.
[12] D. E. Chavez, B. C. Tappan, 8-ISICP, Los Alamos National Labo-
ratory, 2009.
[13] D. L. Naud, M. A. Hiskey, H. H. Harry, J. Energ. Mater. 2003,
21, 57–62.
[14] D. E. Chavez, B. C. Tappan, B. A. Mason, D. Parrish, Propel-
lants, Explos., Pyrotech. 2009, 34, 475–479.
[15] B. G. van den Bos, Rec. Trav. Chim. Pays-Bas Belgique 1960,
79, 836–842.
Acknowledgement
Financial support of this work by the Ludwig-Maximilian University
of Munich (LMU), the U.S. Army Research Laboratory (ARL), the
Armament Research, Development and Engineering Center (ARDEC),
the Strategic Environmental Research and Development Program
(SERDP), and the Office of Naval Research (ONR Global, title: “Syn-
thesis and Characterization of New High Energy Dense Oxidizers
(HEDO) - NICOP Effort”) under contract nos. W911NF-09-2-0018
[16] M. S. Pevzner, N. V. Gladkova, T. A. Kravchenko, Zh. Org.
Khim. 1996, 32, 1230–1233.
[17] H.-H. Licht, H. Ritter, J. Energ. Mater. 1994, 12, 223–235.
[18] N. Biswas, S. Umapathy, J. Phys. Chem. A 2000, 104, 2734–
2745.
[19] F. Billes, H. Endredi, G. Keresztury, THEOCHEM 2000, 530,
183–200.
(ARL), W911NF-09-1-0120 (ARDEC), W011NF-09-1-0056 (AR- [20] CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta
(release 01–04–2005 CrysAlis171.NET), 2005.
DEC), and 10 WPSEED01-002 / WP-1765 (SERDP) is gratefully ac-
knowledged. The authors acknowledge collaborations with Dr. Mila
Krupka (OZM Research, Czech Republic) in the development of new
testing and evaluation methods for energetic materials and with Dr.
Muhamed Sucesca (Brodarski Institute, Croatia) in the development
of new computational codes to predict the detonation and propulsion
parameters of novel explosives. We are indebted to and thank Drs.
Betsy M. Rice and Brad Forch (ARL, Aberdeen, Proving Ground, MD)
[21] CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta
(release 01–04–2005 CrysAlis171.NET), 2005.
[22] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J.
Appl. Crystallogr. 1993, 26, 343–350.
[23] G. M. Sheldrick, SHELXS-97, Program for Crystal Structure So-
lution, University of Göttingen, Germany, 1990.
[24] G. M. Sheldrick, SHELXL-97, Program for the Refinement of
Crystal Structures, University of Göttingen, Germany, 1997.
and Mr. Gary Chen (ARDEC, Picatinny Arsenal, NJ) for many helpful [25] L. Farrugia, J. Appl. Crystallogr. 1999, 32, 837–838.
1192
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2011, 1181–1193