60
G. Milkereit et al. / Chemistry and Physics of Lipids 131 (2004) 51–61
2.03 (s, 6H, OAc), 2.00 (s, 9H, OAc), 1.94 (s, 3H,
OAc), 1.49–1.59 (m, 2H, Alkyl--CH2), 1.19–1.31
(m, 24H, Alkyl-CH2), 0.85 (t, 3H, Alkyl-CH3);
References
Blunk, D., Praefke, K., Vill, V., 1998. Amphotropic liquid crystals.
In: Demus, D., Goodby, J., Gray, G.W., Spiess, H.-W., Vill,
V. (Eds.), Handbook of Liquid Crystals, vol. 3. Wiley-VCH,
Weinheim, pp. 305–340.
Curatolo, W., 1987. The physical properties of glycolipids.
Biochim. Biophys. Acta 779, 381–401.
Fairhurst, C.E., Fuller, S., Gray, J., Holmes, M.C., Tiddy, G.J.,
1998. Lyotropic surfactant liquid crystals. In: Demus, D.,
Goodby, J., Gray, G.W., Spiess, H.-W., Vill, V. (Eds.),
Handbook of Liquid Crystals, vol. 3. Viley-VCH, Weinheim,
pp. 341–392.
Ferrier, R.J., Furneaux, R.H., 1976. Synthesis of 1,2-trans-related
1-thioglycoside esters. Carbohydr. Res. 52, 63–68.
Fischer, E., Helferich, B., 1911. Über neue synthetische glycoside.
Liebigs Ann. Chem. 383, 68–91.
Fischer, S., Fischer, H., Diele, S., Pelzl, G., Jankowski, K.,
Schmidt, R.R., Vill, V., 1994. On the structure of the
thermotropic cubic mesophase. Liq. Cryst. 17, 855–861.
Glatter, O., 1977. Data evaluation of small-angle scattering:
calculation of the radial electron density distribution by means
of indirect Fourier transformation. Acta Phys. Aust. 47, 83–
102.
3
3
2
3
3
ꢂ
ꢂ
ꢂ
J1ꢂ,2 = 8.1 Hz, J2ꢂ,3 = 9.7 Hz, J3ꢂ,4 = 9.7 Hz,
3
3
ꢂ
ꢂ
ꢂ
J4ꢂ,5 = 9.7 Hz, J5ꢂ,6a = 4.6 Hz, J5ꢂ,6b = 2.6 Hz,
3
3
ꢂ
ꢂ
ꢂꢂ ꢂꢂ
ꢂꢂ ꢂꢂ
J6a ,b = 12.2 Hz, J1 ,2 = 8.1 Hz, J2 ,3
=
=
9.7 Hz, 3J3 ,4 = 9.7 Hz, 3J4 ,5 = 9.7 Hz, 3J5ꢂꢂ,6a
ꢂꢂ ꢂꢂ
ꢂꢂ ꢂꢂ
ꢂꢂ
3
2
ꢂꢂ
ꢂꢂ ꢂꢂ
4.6 Hz, J5ꢂꢂ,6b = 2.6 Hz, J6a ,b = 12.2 Hz,
3J1a,2 = 3.1 Hz, J1a,b = 10.7 Hz, J3a,2 = 3.1 Hz,
2
3
3J3a,b = 10.7 Hz.
13C NMR (125 MHz, CDCl3 + TMS): δ = 172.51
=
(C O, amid), 170.63, 170.29, 170.18, 169.70, 169.35,
ꢂ
ꢂꢂ
=
169.27 (C O, OAc), 101.25, 101.19 (C-1 , C-1 ),
72.86, 72.72 (C-3ꢂ, C-3ꢂꢂ), 71.87 (C-5ꢂ, C-5ꢂꢂ), 71.38,
71.30 (C-2ꢂ, C-2ꢂꢂ), 70.35, 69.22 (C-1, C-3), 68.45
(C-4ꢂ, C-4ꢂꢂ), 61.84 (C-6ꢂ, C-6ꢂꢂ), 52.08 (C-2), 25.96,
24.83, 24.69, 24.17, 23.18, 22.70, 21.18 (Alkyl-CH2),
20.74, 20.61, 20.19 (–CH3, OAc), 14.08 (Alkyl-CH3).
4.4.5. N-(Palmitoyl)-1,3-di-O-(β-d-glucopyranosyl)-
2-deoxy-2-amino-sn-glycerol (5)
Glatter, O., Kratky, O. (Eds.), 1982. Small-Angle-X-ray Scattering.
Academic Press, London.
Compound 4 (325 mg; 0.33 mmol) was dissolved in
25 mL dry methanol and sodium methoxide was added
(pH 8–9). The solution was stirred at ambient temper-
ature until TLC revealed the reaction to be complete.
The reaction mixture was neutralised using Amberlyst
IR 120 ion exchange resign (protonated form), fil-
trated and evaporated in vacuo. The product was re-
crystallised from methanol. Yield: 201 mg (94%).
1H NMR (400 MHz, d4-methanol): δ = 4.33, 4.34
(je d, 1H, H-1ꢂ, H-1ꢂꢂ), 4.04, 4.09 (je d, 1H, H-1a,
H-3a), 3.81–3.94 (m, 4H, H-1b, H-3b, H-6aꢂ, H-6aꢂꢂ),
3.65–3.73 (m, 2H, H-6bꢂ, H-6bꢂꢂ), 3.26–3.42 (m, 7H,
H-2, H-3ꢂ, H-4ꢂ, H-5ꢂ, H-3ꢂꢂ, H-4ꢂꢂ, H-5ꢂꢂ), 3.22, 3.23
(je dd, 1H, H-2ꢂ, H-2ꢂꢂ), 2.39 (t, 2H, Alkyl-␣-CH2),
Harada, H., Morie, T., Hirokawa, Y., Kato, S., 1996. An efficient
synthesis of 6-substituted aminohexahydro-1H-1,4-diazepines
from 2-substituted aminopropenals. Chem. Pharm. Bull.
44 (12), 2205–2212.
He, L., Garamus, V.M., Funari, S.S., Malfois, M., Willumeit,
R., Niemeyer, B., 2002. Comparison of small-angle scattering
methods for the structural analysis of octyl--maltopyranoside
micelles. J. Phys. Chem. B 106, 7596–7604.
Helferich, B., Ost, W., 1962. Synthese einiger -d-xylopyranoside.
Chem. Ber. 95, 2612–2615.
Hinz, H.-J., Tenchova, R., Tenchov, B., Quinn, P.J.,
1996. Lamellar-non-lamellar phase transitions in synthetic
glycoglycerolipids studied by time-resolved X-ray diffraction.
Liq. Cryst. 20, 469–482.
Ishizuka, I., Yamakawa, T., 1985. Glycolipids. In: Wiegandt, H.
(Ed.), New Comprehensive Biochemistry, vol. 10. Elsevier,
pp. 101–197.
Jeffrey, G.A., Wingert, L.M., 1992. Carbohydrate liquid crystals.
Liq. Cryst. 12, 179–202.
1.59–1.67 (m, 2H, Alkyl--CH2), 1.30–1.41 (m,
3
ꢂ
ꢂ
24H, Alkyl-CH2), 0.93 (t, 3H, Alkyl-CH3); J1 ,2
=
=
=
3
3
3
ꢂ
ꢂ
ꢂꢂ ꢂꢂ
8.1 Hz, J2 ,3 = 9.2 Hz, J1 ,2 = 8.1 Hz, J1a,2
Kuttenreich, H., Hinz, H.-J., Inczedy-Marcsek, M., Koynova, R.,
Technov, B., Laggner, P., 1988. Polymorphism of synthetic
2
3
3
4.1 Hz, J1a,b = 11.2 Hz, J3a,2 = 5.7 Hz, J3a,b
11.1 Hz.
1,2-di-O-alkyl-3-O--d-galactopyranosyl-sn-glycerols
of
different alkyl chain length. Chem. Phys. Lipids 47, 245–260.
Mannock, D.A., Lewis, R.N.A.H., McElhaney, R.N., 1987. An
improved
procedure
for
the
preparation
of
1,2-di-O-acyl-3-O-(-d-glucopyranosyl)-sn-glycerols. Chem.
Phys. Lipids 43, 113–127.
Acknowledgements
Mannock, D.A., Lewis, R.N.A.H., McElhaney, R.N., 1990. The
chemical synthesis and physical characterisation of 1,2-di-O-
acyl-3-O-(-d-glucopyranosyl)-sn-glycerols, an important class
of membrane glycolipids. Chem. Phys. Lipids 55, 309–321.
We are grateful to the Deutsche Forschungsgemein-
schaft (SFB 470, Graduiertenkolleg 464) and the Gly-
coverein for financial support.