M. Takhi et al. / Tetrahedron Letters 42 (2001) 4053–4056
4055
protocol was further exemplified by the synthesis of a
(1-5)-linked C-disaccharide derivative 9b from 9a
(entry 8, Table 1) in 86% yield.
Konobe, M.; Goto, T. Carbohydr. Res. 1987, 171, 193.
8. Danishefsky, S.; Keerwin, J. F. J. Org. Chem. 1982, 47,
3803.
9. Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M.
Chem. Lett. 1993, 2013.
10. Dawe, R. D.; Fraser-Reid, B. J. Chem. Soc., Chem.
Commun. 1981, 1180.
11. Toshima, K.; Miyamito, N.; Matsuo, G.; Nakata, M.;
Matsumura, S. J. Chem. Soc., Chem. Commun. 1996,
1379.
12. Ghosh, R.; De, D.; Shown, B.; Mait, S. B. Carbohydr.
Res. 1999, 321, 1.
In summary, Yb(OTf)3 has been demonstrated as an
efficient catalyst for highly stereoselective C-glycosyla-
tions to produce a variety of functionalized C-pseudo-
glycals, which are useful intermediates for various
applications. In addition, the catalyst recovered from
the reaction mixture can be reused without serious
loss of activity.18 The non-hazardous and low toxic
nature of lanthanoids should also be emphasized.
13. Godage, H. Y.; Fairbanks, A. J. Tetrahedron Lett.
2000, 41, 7589.
14. Takhi, M.; Abdel-Rahman, A. A.-H.; Schmidt, R. R.
Synlett 2001, 427.
General procedure: To a mixture of tri-O-acetyl glucal
1 (1 equiv.) and nucleophile (1.2 equiv.) in CH2Cl2
was added Yb(OTf)3 (10 mol%) at room
temperature19 and stirred. The contents were stirred
for the required time (Table 1) and the reaction was
monitored by TLC. Water (20 ml) was added to the
reaction mixture and extracted twice with CH2Cl2.
The combined organic layers were dried over Na2SO4,
filtered and concentrated. The residue was purified by
column chromatography with mixtures of petroleum
ether/ethyl acetate to furnish the products.
15. Compound 4ba: [h]2D1 +14.1 (c=1.1, CHCl3); 1H NMR
(CDCl3, 600 MHz): l 2.05 (s, 3 H, COCH3), 2.07 (s, 3
H, COCH3), 2.08 (s, 3 H, COCH3), 2.27 (dd, J1%a,1=5.0
Hz, J1%a,1%b=14.7 Hz, 1 H, 1%-Ha), 2.47 (dd, J1%b,1=8.8
Hz, J1%b,1%a=14.7 Hz, 1 H, 1%-Hb), 3.93 (ddd, J5,6a=3.4
Hz, J5,6b=6.3 Hz, J5,4=9.9 Hz, 1 H, 5-H), 4.14 (dd,
J6a,5=3.4 Hz, J6a,6b=11.9 Hz, 1 H, 6-Ha), 4.21 (dd,
J6b,5=6.3 Hz, J6b,6a=11.9 Hz, 1 H, 6-Hb), 4.38 (ddd,
J1,2=2.4 Hz, J1,1%a=5.0 Hz, J1,1b=8.8 Hz, 1 H, 1-H),
4.58 (d, J3%a,3%b=13.4 Hz, 1 H, 3%-Ha), 4.59 (d, J3%b,3%a
=
13.4 Hz, 1 H, 3%-Hb), 5.06 (s, 1 H, 4%-Ha, terminal
methylene), 5.11 (dd, J4,3=2.3 Hz, J4,5=9.9 Hz, 1 H,
4-H), 5.16 (s, 1 H, 4%-Hb, terminal methylene), 5.80 (dd,
Acknowledgements
This work was supported by the Deutsche
Forschungsgemeinschaft and the Fonds der Chemis-
chen Industrie. We are grateful to Dr. Armin Geyer
for his help in the structural assignments.
J
3,4=2.3 Hz, J3,2=10.4 Hz, 1 H, 3-H), 5.91 (dd, J2,1=
2.4 Hz, J2,3=10.4 Hz, 1 H, 2-H). 13C NMR (CDCl3,
150 MHz): 20.7, 20.8, 21.0, 36.9, 62.7, 64.8, 66.6, 69.6,
70.4, 115.4, 123.9, 132.7, 140.1, 170.3, 170.5, 170.7. MS
(EI): 326 (M+), 267 (M+−C2H3O2).
16. Compound 5ba: [h]2D1 +86.9 (c=1, CHCl3); 1H NMR
(CDCl3, 600 MHz): l 2.05 (s, 3 H, COCH3), 2.06 (s, 3
H, COCH3), 3.88 (ddd, J5,6a=2.9 Hz, J5,6b=5.4 Hz,
References
1. (a) Khan, A. T.; Ahmed, W.; Schmidt, R. R. Carbo-
hydr. Res. 1996, 280, 277; (b) Dietrich, H.; Schmidt, R.
R. Liebigs. Ann. Chem. 1994, 975; (c) Khan, A. T.;
Sharma, P.; Schmidt, R. R. J. Carbohydr. Chem. 1995,
14, 1353; (d) Eisele, T.; Ishida, H.; Hummel, G.
Liebigs. Ann. Chem. 1995, 2113; (e) Castro-Palomino, J.
C.; Schmidt, R. R. Liebigs. Ann. Chem. 1996, 1623; (f)
Mahling, J. A.; Jung, K.-H.; Schmidt, R. R. Liebigs.
Ann. Chem. 1995, 11, 461; (g) Streicher, H.; Reiner, M.;
Schmidt, R. R. J. Carbohydr. Chem. 1997, 16, 277; (h)
Streicher, H.; Geyer, A.; Schmidt, R. R. Chem. Eur. J.
1996, 2, 502.
J
J
J
5,4=8.4 Hz, 1 H, 5-H), 4.14 (dd, J6a,5=2.9 Hz,
6a,6b=12.1 Hz, 1 H, 6-Ha), 4.17 (dd, J6b,5=5.4 Hz,
6b,6a=12.1 Hz, 1 H, 6-Hb), 4.81 (dd, J1,2=2.6 Hz,
J1,1%=5.2 Hz, 1 H, 1-H), 4.83 (m, 2H, 3%-Ha and 3%-Hb),
5.21 (dd, J4,3=2.1 Hz, J4,5=8.4 Hz, 1 H, 4-H), 5.25
(m, 1 H, 1%-H), 5.78 (dd, J3,4=2.1 Hz, J3,2=10.4 Hz, 1
H, 3-H), 5.88 (dd, J2,1=2.6 Hz, J2,3=10.4 Hz, 1 H,
2-H). 13C NMR (CDCl3, 150 MHz): 20.7, 21.0, 63.1,
65.0, 68.8, 70.5, 77.2, 89.4, 125.1, 130.7, 170.3, 170.8,
209.1. MS (EI): 253 (MH+), 213 (M+−C3H4). Anal.
calcd for C13H16O5 (252.26): C, 61.89; H, 6.39. Found:
C, 61.62; H, 6.12.
2. Suhadolnik, R. J. Nucleoside Antibiotics; Wiley-Inter-
17. (a) Fuchss, T.; Schmidt, R. R. Synthesis 2000, 259; (b)
Fuchss, T.; Schmidt, R. R. Synthesis 1998, 753; (c)
Colombo, L.; Casiraghi, G.; Pittalis, A.; Rassau, G. J.
Org. Chem. 1991, 56, 3897; (d) Westermann, B.; Wal-
ter, A.; Diedrichs, N. Angew. Chem., Int. Ed. 1999, 38,
3384; (e) Campbell, A. D.; Paterson, D. E; Taylor, R.
J. K.; Raynham, A. M. Chem. Commun. 1999, 1599; (f)
Nishikawa, T.; Ishikawa, M.; Isobe, M. Synlett 1999,
123; (g) Dondoni, A.; Marra, A.; Massi, A. J. Org.
Chem. 1999, 64, 933.
science: New York, 1970.
3. Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc.
1982, 104, 4976.
4. Paterson, L.; Keown, L. E. Tetrahedron Lett. 1997, 38,
5727.
5. Horita, K.; Sakkurai, Y.; Nagasawa, M.; Hachiya, S.;
Yonemistu, O. Synlett 1994, 43.
6. (a) Weatherman, R. V.; Mortell, K. H.; Chervenak, M.;
Kiessling, L. L.; Toone, E. J. Biochemistry 1996, 35,
3619; (b) Sutherlin, D. P.; Stark, T. M.; Hughes, R.;
Armstrong, R. W. J. Org. Chem. 1996, 61, 8350.
7. (a) Grynkiewicz, G.; BeMiller, J. N. J. Carbohydr.
18. For example, essentially the same result was obtained
in the glycosylation of 1 with allyltrimethylsilane (entry
1, Table 1) (81%, 4 h, a) and 1-phenyl-1-(trimethylsily-
Chem. 1982, 1, 121; (b) Ichikawa, Y.; Isobe, M.;
.