Angewandte Chemie International Edition
10.1002/anie.202010175
COMMUNICATION
[
10] Allyl oxocarbenium ion intermediate I generated from tri-O-acetyl-D-glucal has
efficiently C-glycosylated in a regioselective manner (products
-1
been recently estimated to be favored by 19.58 kJ.mol over II, see: N. Huang,
H. Liao, H. Yao, T. Xie, S. Zhang, K. Zou, X. -W. Liu Org. Lett. 2018, 20, 16-
19.
4g-k). Noteworthy, the β-isomer is predominantly formed when
glycosyl cation is trapped by oxindoles, a stereochemical
outcome that is difficult to rationalize.
[
11] Calculations performed on allyl oxocarbenium ion interemediates generated from
di-O-acetyl-L-arabinal also indicated a predominant axial orientation of the 4-
OAc group, see: S. Hosokawa, B. Kirschbaum, M. Isobe Tetrahedron Lett. 1998,
In conclusion, this study enabled to convert the cyclic
allyloxycarbenium ion I, the key intermediate in the Ferrier
rearrangement, from an elusive species to a well-defined
molecule. This cation was suggested to accumulate in the
presence of triflic acid under flow conditions, and was further
trapped by anionic C-nucleophiles. Exploiting non-nucleophilic
3
9, 1917-1920.
[
12] K. Le Mai Hoang, W. -L. Leng, Y. -J. Tan, X. -W. Liu Stereoselective C-
glycosylation from glycal scaffolds, in Selective Glycosylations: Synthetic
methods and catalysts; Wiley-VCH, 2017, pp 135-153.
[
13] a) R. J. Ferrier, N. J. Prasad, J. Chem. Soc. 1969, 570-575. b) D. P. Curran, Y.-
G. Suh, Carbohydr. Res. 1987, 171, 161–191. For recent work on long-range
participation by protecting groups see c) Hansen, T.; Elferink, H.; van Hengst,
J. M. A.; Houthuijs, K. J.; Remmerswaal, W. A.; Kromm, A.; Berden, G.; van
der Vorm, S.; Rijs, A. M.; Overkleeft, H. S.; Filippov, D. V.; Rutjes, F. P. J. T.;
van der Marel, G. A.; Martens, J.; Oomens, J.; Codée, J. D. C.; Boltje, T. J.
Nature Communications 2020, 11 (1). d) Marianski, M.; Mucha, E.; Greis, K.;
Moon, S.; Pardo, A.; Kirschbaum, C.; Thomas, D. A.; Meijer, G.; Helden, G.;
Gilmore, K.; Seeberger, P. H.; Pagel, K. Angew. Chem. Int. Ed. 2020, 59,
6166–6171.
5
HF/SbF superacid solution, this cation was fully characterized by
combining low-temperature NMR spectroscopy and DFT
calculations. Its synthetic application in Ferrier rearrangements
starting from 2-deoxyglucosyl donor produced a series of
unprecedented nitrogen-containing C-aryl pseudoglycals.
[
[
14] F. Marchetti, G. Pampaloni, S. Zacchini, Dalton. Trans. 2009, 8096-8106.
15] S. Suga, M. Okajima, K. Fujiwara, J. -I. Yoshida, J. Am. Chem. Soc. 2001, 123,
7
941-7942.
16] S. Suga, K. Matsumoto, K; Ueoka, J. -I. Yoshida, J. Am. Chem. Soc. 2006, 128,
710-7711.
17] K. Saito, K. Ueoka, K. Matsumoto, S. Suga, T. Nokami, J. -I. Yoshida, Angew.
Chem. Int. Ed. 2011, 50, 5153-5156.
[
[
Acknowledgements
7
LL, NB and ZA thank the Agence Nationale de la Recherche (ANR
SweetCat) for PhD and post-doctoral grants. ST and YB
acknowledge the European Union (ERDF), Région Nouvelle
Aquitaine and the University of Poitiers for financial support. YB
thanks the PRC CNRS JSPS program number 1706 for funding.
JJB acknowledges the European Research Council for generous
support (ERC-2017-AdG to JJB - Project number 788143-
RECGLYCANMR). AA and JJB thank Agencia Estatal de
Investigación (Spain) for grants CTQ2015-64597-C2-1-P and
Severo Ochoa Excellence Accreditation SEV‐2016‐0644. AN was
partially supported by the Grant-in-Aid for Scientific Research on
Innovative Areas 2707 Middle molecular strategy from MEXT (no.
[
[
[
[
18] P. Chen, J. Su, Tetrahedron 2016, 72, 84-94.
19] H. Y. Tong, S. Xiang, W. L. Leng, X. -W. Liu, RSC Adv. 2014, 4, 34816-34822.
20] P. Tiwari, G. Agnihotri, A. K. Misra, Carbohydr. Res. 2005, 340, 749-752.
21] G. A. Olah, G. K. S. Prakash, A. Molnar, J. Sommer, Superacids, 2nd edn, Wiley
Intersciences, New York, 2009.
[22] a) A. Martin, A. Arda, J. Désiré, A. Martin-Mingot, N. Probst, P. Sinaÿ, J.
Jiménez-Barbero, S. Thibaudeau, Y. Blériot, Nat. Chem. 2016, 8, 186-191. b) L.
Lebedel, A. Arda, A. Martin, J. Désiré, A. Mingot, M. Aufiero, N. Aiguabella,
R. Gilmour, J. Jimenez-Barbero, Y. Blériot, S. Thibaudeau, Angew. Chem. Int.
Ed. 2019, 58, 13758-13762; Angew. Chem. 2018, 131, 13896-13900. c) T.
Hansen, L. Lebedel, W. A. Remmerswaal, S. van der Vorm, D. P. A. Wander, M.
Somers, H. S. Overkleeft, D. V. Filippov, J. Désiré, A. Mingot, Y. Blériot, G. A.
van der Marel, S. Thibaudeau, J. Codee, ACS Central Sci. 2019, 5, 781-788.
[23] a) H.-C. Lin, W.-P. Du, C.-C. Chang, C.-C. Lin, Tetrahedron Lett. 2005, 46,
071–5076. b) V. Bollit, C. Mioskowski, S. G. Lee, J. R. Falck, J. Org. Chem.
5
1990, 55, 5812–5813. c) A. Fernandes, M. Dell’Olmo, A. Tatibouët, A. Imberty,
C. Philouze, P. Rollin, Tetrahedron Lett. 2008, 49, 3484–3488.
15H05849), Scientific Research (B) (no. 26288049), Scientific
[24] E. I. Balmond, D. M. Coe, M. C. Galan, E. M. McGarrigle Angew. Chem., Int.
Ed. 2012, 51, 9152−9155.
Research (S) (no. 26220804), Scientific Research (S) (no.
[
[
25] G. A. Olah, R. H. Schlosberg, J. Am. Chem. Soc. 1968, 90, 6464-6467.
26] K. Kitamura, Y. Ando, T. Matsumoto, K. Suzuki, Chem. Rev. 2018, 118, 1495-
25220913), Scientific Research (C) (no. 17865428), AMED (no.
18ak0101090h), the Japan Science and Technology Agency’s
1
598.
27] a) Y. Ichikawa, M. Isobe, M. Konobe, T. Goto, Carbohdyr. Res. 1987, 171, 193-
99. b) N. R. Swamy, M. Srinivasulu, T. S. Reddy, T. V. Goud, Y.
Venkateswarlu, J. Carbohydr. Chem. 2004, 23, 435-441.
[
(
JST) A-step program (no. 18067420), CREST, and the
1
Ogasawara Foundation for the Promotion of Science
Engineering.
&
[28] For undesired intramolecular cyclization after reaction of glucals with anilines
and phenols, see: a) J. S. Yadav, B. V. S. Reddy, K. V. Rao, K. S. Raj, A. R.
Prasad, S. K. Kumar, A. C. Kunwar, P. Jayaprakash, B. Jagannath, Angew. Chem.
Int. Ed. 2003, 42, 5198-5201. b) S. B. Simelane, H. H. Kinfe, A. Muller, B. B.
G. Williams Org. Lett. 2014, 16, 4543-4545. c) C. Du, F. Li, X. Zhang, W. Hu,
Q. Yao, A. Zhang J. Org. Chem. 2011, 76, 8833-8839.
Keywords: glycosylation
•
oxycarbenium
•
Ferrier
•
superelectrophile • C-glycoside
[
29] a) R. Beaud, B. Michelet, Y. Reviriot, A. Martin-Mingot, J. Rodriguez, D. Bonne,
S. Thibaudeau Angew. Chem. Int. Ed. 2020, 59, 1279-1285; Angew. Chem. 2020,
132, 1295-1301. b) U. Castelli, J-F. Lohier, I. Drukenmüller, A. Mingot, C.
Bachman, C. Alayrac, J. Marrot, K. Stierstorfer, A. Kornath, A-C. Gaumont, S.
Thibaudeau Angew. Chem. Int. Ed. 2019, 58, 1355-1360; Angew. Chem. 2019,
131, 1369-1374. c) L. J. C. Bonazaba Milandou, H. Carreyre, S. Alazet, G.
Greco, A. Martin-Mingot, C. Nkounkou Loumpangou, J-M. Oumaba, F.
Bouazza, T. Billard, S. Thibaudeau Angew. Chem. Int. Ed. 2017, 56, 169-172;
Angew. Chem. 2017, 129, 175-178. d) N. Probst, A. Martin, J. Désiré, A. Mingot,
J. Marrot, Y. Blériot, S. Thibaudeau Org. Lett. 2017, 19, 1040-1043.
[
[
1]
2]
R. J. Ferrier, O. A. Zubkov, Org. React. 2003, 62, 569-736.
For reviews, see: a) A. M. Gomez, S. Miranda, J. C. Lopez Carbohydr. Chem.
017, 42, 210-247. b) A. M. Gomez, F. Lobo, C. Uriel, J. C. Lopez Eur. J.
Org. Chem. 2013, 7221-7262. c) A. A. Ansari, R. Lahiri, Y. D. Vankar Arkivoc
E. Fischer, Ber. Dtsch. Chem. Ges. 1914, 47, 196–210.
A. M. Gomez, F. Lobo, S. Miranda, J. C. Lopez, Molecules 2015, 20, 8357-
2
[3]
[4]
[5]
8
394.
[6]
For recent reviews on glycal and Ferrier reaction exploitation, see: a) C. S.
Bennett, M. C. Galan, Chem. Rev. 2018, 118, 7931-7985. b) H. H. Kinfe, Org.
Biomol. Chem. 2019, 17, 4153-4182. c) H. Liao, J. Ma, H. Yao, X-W. Liu, Org.
Biomol. Chem. 2018, 16, 1791-1806. d) E. Bokor, S. Kun, D. Goyard, M. Toth,
J-P. Praly, S. Vidal, L. Somsak, Chem. Rev. 2017, 117, 1687-1764.
5
[30] For studies on HF/SbF acidity evaluation, see: J.-C. Culmann, M. Fauconet, R.
Jost, J. Sommer, New J. Chem. 1999, 23, 863-867 and references cited therein.
[31] Similar trends of reactivity have already been observed, see: A. Mamontov, A.
Martin-Mingot, B. Métayer, O. Karam, F. Zunino, F. Bouazza, S. Thibaudeau
Chem. A. Eur. J. 2020, 26, 10411-10416.
[7]
For recent examples of glycal activation with trifluoromethanesulfonic acid and
trifluoromethanesulfonate-based Lewis acids, see: a) P. Chen, S. Wang
Tetrahedron 2013, 69, 583-588. b) G. Narasimha, B. Srinivas, P. R. Krishna, S.
Kashyap Synlett 2014, 25, 523-526. c) P. Chen, S. Li Tetrahedron Lett. 2014, 55,
[32] CCDC 2014659 (4b) contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
[33] G. A. Olah, D. Klumpp, Superelectrophiles and their chemistry; John Wiley and
Sons; New York, 2008.
5
13-5816. d) P. Chen, S. Wang, Tetrahedron 2012, 68, 5356-5262. e) B. G.
Williams, S. B. Simelane, H. H. Kinfe Org. Biomol. Chem. 2012, 10, 5636-5642.
For a selected example, see: S. J. Danishefsky, K. F. Kerwin, J. Org. Chem. 1982,
[34] T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc.
Rev. 2016, 45, 546-576.
[
8]
9]
4
7, 3803-3805.
[
a) R. J. Ferrier, G. H. Sankey, J. Chem. Soc. C 1966, 2345-2349. b) A. R.
Katritzky, P. J. Steel, S. N. Danisenko, Tetrahedron 2001, 57, 3309-3314. c) D.
P. Curran, Y.-G. Suh, J. Am. Chem. Soc. 1984, 106, 5002-5004.
5
This article is protected by copyright. All rights reserved.