Journal of the American Chemical Society
Page 4 of 6
Decarboxylation of Short-Chain Fatty Acids to 1-Alkenes. Angew.
Chem. Int. Ed. Engl. 2015, 54 (30), 8819-22.
16. Fang, B.; Xu, H.; Liu, Y.; Qi, F.; Zhang, W.; Chen, H.;
Wang, C.; Wang, Y.; Yang, W.; Li, S., Mutagenesis and redox
partners analysis of the P450 fatty acid decarboxylase OleTJE. Sci
Rep 2017, 7, 44258.
1
2
3
4
5
6
7
8
REFERENCES
1.
Qiu, Y.; Tittiger, C.; Wicker-Thomas, C.; Le Goff, G.;
Young, S.; Wajnberg, E.; Fricaux, T.; Taquet, N.; Blomquist, G.
J.; Feyereisen, R., An insect-specific P450 oxidative
decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl
Acad Sci U S A 2012, 109 (37), 14858-63.
17.
Lu, C.; Shen, F. L.; Wang, S. B.; Wang, Y. Y.; Liu, J.;
Bai, W. J.; Wang, X. Q., An Engineered Self-Sufficient
Biocatalyst Enables Scalable Production of Linear alpha-Olefins
from Carboxylic Acids. Acs Catalysis 2018, 8 (7), 5794-5798.
2.
Rude, M. A.; Baron, T. S.; Brubaker, S.; Alibhai, M.;
Del Cardayre, S. B.; Schirmer, A., Terminal olefin (1-alkene)
biosynthesis by a novel p450 fatty acid decarboxylase from
Jeotgalicoccus species. Appl. Environ. Microbiol. 2011, 77 (5),
1718-27.
18.
Wise, C. E.; Hsieh, C. H.; Poplin, N. L.; Makris, T. M.,
9
Dioxygen Activation by the Biofuel-Generating Cytochrome
P450 OleT. ACS Catalysis 2018, 8 (10), 9342-9352.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
19.
Huang, J.-L.; Tang, Y.; Yu, C.-P.; Sanyal, D.; Jia, X.;
3.
Rui, Z.; Harris, N. C.; Zhu, X. J.; Huang, W.; Zhang, W.
Liu, X.; Guo, Y.; Chang, W.-c., Mechanistic Investigation of
Oxidative Decarboxylation Catalyzed by Two Iron (II)-and 2-
Oxoglutarate-Dependent Enzymes. Biochemistry 2018, 57 (12),
1838-1841.
J., Discovery of a Family of Desaturase-Like Enzymes for 1-
Alkene Biosynthesis. Acs Catalysis 2015, 5 (12), 7091-7094.
4.
Rui, Z.; Li, X.; Zhu, X.; Liu, J.; Domigan, B.; Barr, I.;
Cate, J. H.; Zhang, W., Microbial biosynthesis of medium-chain
1-alkenes by a nonheme iron oxidase. Proc. Natl. Acad. Sci. USA
2014, 111 (51), 18237-18242.
20.
Yu, C. P.; Tang, Y.; Cha, L.; Milikisiyants, S.;
Smirnova, T. I.; Smirnov, A. I.; Guo, Y.; Chang, W. C.,
Elucidating the Reaction Pathway of Decarboxylation-Assisted
Olefination Catalyzed by a Mononuclear Non-Heme Iron
Enzyme. J. Am. Chem. Soc. 2018, 140 (45), 15190-15193.
5.
Schirmer, A.; Rude, M. A.; Li, X.; Popova, E.; del
Cardayre, S. B., Microbial biosynthesis of alkanes. Science 2010,
329 (5991), 559-62.
21.
Grant, J. L.; Mitchell, M. E.; Makris, T. M., Catalytic
6.
Sorigue, D.; Legeret, B.; Cuine, S.; Blangy, S.; Moulin,
strategy for carbon-carbon bond scission by the cytochrome P450
OleT. Proc Natl Acad Sci U S A 2016, 113 (36), 10049-54.
S.; Billon, E.; Richaud, P.; Brugiere, S.; Coute, Y.; Nurizzo, D.;
Muller, P.; Brettel, K.; Pignol, D.; Arnoux, P.; Li-Beisson, Y.;
Peltier, G.; Beisson, F., An algal photoenzyme converts fatty
acids to hydrocarbons. Science 2017, 357 (6354), 903-907.
22.
Yu, C.-P.; Tang, Y.; Cha, L.; Milikisiyants, S.;
Smirnova, T. I.; Smirnov, A. I.; Guo, Y.; Chang, W.-c.,
Elucidating reaction pathway of decarboxylation-assisted
olefination catalyzed by a mononuclear non-heme iron enzyme. J.
Am. Chem. Soc. 2018.
7.
Grant, J. L.; Hsieh, C. H.; Makris, T. M.,
Decarboxylation of fatty acids to terminal alkenes by cytochrome
P450 compound I. J. Am. Chem. Soc. 2015, 137 (15), 4940-3.
23.
Sligar, S. G.; Lipscomb, J. D.; Debrunner, P. G.;
8.
Warui, D. M.; Li, N.; Norgaard, H.; Krebs, C.;
Gunsalus, I. C., Superoxide anion production by the autoxidation
of cytochrome P450cam. Biochem. Biophys. Res. Commun. 1974,
61 (1), 290-6.
Bollinger, J. M.; Booker, S. J., Detection of Formate, Rather than
Carbon Monoxide, As the Stoichiometric Coproduct in
Conversion of Fatty Aldehydes to Alkanes by a Cyanobacterial
Aldehyde Decarbonylase. J. Am. Chem. Soc. 2011, 133 (10),
3316-3319.
24.
Tamanaha, E.; Zhang, B.; Guo, Y.; Chang, W. C.; Barr,
E. W.; Xing, G.; St Clair, J.; Ye, S.; Neese, F.; Bollinger, J. M.,
Jr.; Krebs, C., Spectroscopic Evidence for the Two C-H-Cleaving
Intermediates of Aspergillus nidulans Isopenicillin N Synthase. J.
Am. Chem. Soc. 2016, 138 (28), 8862-74.
9.
Wise, C. E.; Grant, J. L.; Amaya, J. A.; Ratigan, S. C.;
Hsieh, C. H.; Manley, O. M.; Makris, T. M., Divergent
mechanisms of iron-containing enzymes for hydrocarbon
biosynthesis. J. Biol. Inorg. Chem. 2017, 22 (2-3), 221-235.
25.
Xing, G.; Diao, Y. H.; Hoffart, L. M.; Barr, E. W.;
Prabhu, K. S.; Arner, R. J.; Reddy, C. C.; Krebs, C.; Bollinger, J.
M., Evidence for C-H cleavage by an iron-superoxide complex in
the glycol cleavage reaction catalyzed by myo-inositol oxygenase.
Proc. Natl. Acad. Sci. USA 2006, 103 (16), 6130-6135.
10.
Hunziker, L.; Bonisch, D.; Groenhagen, U.; Bailly, A.;
Schulz, S.; Weisskopf, L., Pseudomonas strains naturally
associated with potato plants produce volatiles with high potential
for inhibition of Phytophthora infestans. Appl. Environ.
Microbiol. 2015, 81 (3), 821-30.
26.
Schwarzenbacher, R.; Stenner-Liewen, F.; Liewen, H.;
Robinson, H.; Hua, Y. A.; Bossy-Wetzel, E.; Reed, J. C.;
Liddington, R. C., Structure of the Chlamydia protein CADD
reveals a redox enzyme that modulates host cell apoptosis. J. Biol.
Chem. 2004, 279 (28), 29320-29324.
11.
Labows, J. N.; McGinley, K. J.; Webster, G. F.; Leyden,
J. J., Headspace analysis of volatile metabolites of Pseudomonas
aeruginosa and related species by gas chromatography-mass
spectrometry. J. Clin. Microbiol. 1980, 12 (4), 521-6.
27.
Adams, N. E.; Thiaville, J. J.; Proestos, J.; Juarez-
12.
Lo Cantore, P.; Giorgio, A.; Iacobellis, N. S.,
Vazquez, A. L.; McCoy, A. J.; Barona-Gomez, F.; Iwata-Reuyl,
D.; de Crecy-Lagard, V.; Maurelli, A. T., Promiscuous and
Adaptable Enzymes Fill "Holes" in the Tetrahydrofolate Pathway
in Chlamydia Species. Mbio 2014, 5 (4).
Bioactivity of volatile organic compounds produced by
Pseudomonas tolaasii. Front Microbiol 2015, 6, 1082.
13.
Hsieh, C. H.; Huang, X.; Amaya, J. A.; Rutland, C. D.;
Keys, C. L.; Groves, J. T.; Austin, R. N.; Makris, T. M., The
Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved
To Frustrate, Oxygen Rebound Chemistry. Biochemistry 2017, 56
(26), 3347-3357.
28.
Lee, S. K.; Fox, B. G.; Froland, W. A.; Lipscomb, J. D.;
Munck, E., A Transient Intermediate of the Methane
Monooxygenase Catalytic Cycle Containing an Fe(Iv)Fe(Iv)
Cluster. J. Am. Chem. Soc. 1993, 115 (14), 6450-6451.
14.
Matthews, S.; Belcher, J. D.; Tee, K. L.; Girvan, H. M.;
29.
Miller, M. A.; Lipscomb, J. D., Homoprotocatechuate
McLean, K. J.; Rigby, S. E.; Levy, C. W.; Leys, D.; Parker, D. A.;
Blankley, R. T.; Munro, A. W., Catalytic Determinants of Alkene
Production by the Cytochrome P450 Peroxygenase OleTJE. J.
Biol. Chem. 2017, 292 (12), 5128-5143.
2,3-dioxygenase from Brevibacterium fuscum. A dioxygenase
with catalase activity. J. Biol. Chem. 1996, 271 (10), 5524-35.
30.
Price, J. C.; Barr, E. W.; Tirupati, B.; Bollinger, J. M.,
Jr.; Krebs, C., The first direct characterization of a high-valent
iron intermediate in the reaction of an alpha-ketoglutarate-
dependent dioxygenase: a high-spin FeIV complex in
15.
Dennig, A.; Kuhn, M.; Tassoti, S.; Thiessenhusen, A.;
Gilch, S.; Bulter, T.; Haas, T.; Hall, M.; Faber, K., Oxidative
ACS Paragon Plus Environment