Article
Inorganic Chemistry, Vol. 49, No. 6, 2010 2707
hydrogenations. NP catalysts are advantageous for many
reasons including high surface areas and energies, unique
electronic effects, and potentially lower cost: high surface to
volume ratios mean less metal is “wasted” in the particle
interior, and higher selectivity produces fewer undesir-
able side products.63,64 Both mono-1,2,11-50,65-74 and
bimetallic7,8,12,13,51-55,60 NP catalysts have been studied for
arene hydrogenation, and bimetallic catalysts are of particu-
lar interest because of the potential for enhanced activity and
an increased tolerance to sulfur and nitrogen contaminants.8
While both unsupported and supported NP catalysts have
demonstrated activity for arene hydrogenation, supported
catalysts are more robust and also allow for easier separation
of the catalyst from the reaction mixture enabling the catalyst
to be easily recycled.37 In addition, there are important
synergistic effects between the NP catalyst and the underlying
support. For example, the acidity of the support, electron
transfer to and from the support, and epitaxial stress at the
NP-support boundary can all have a significant influence on
the activity of the catalyst.63,71,75 NP catalysts have been
supported on a variety of materials including carbon
nanotubes11-13,55 and metal oxides,7,8,14-26,51-54,60,65-71
and the latter is a very common family of supports currently
used for bitumen processing catalysts, among many others.
Metal oxides such as Al2O3, TiO2, and SiO2 are inexpensive,
widely available commercially, and allow for control of
parameters such as substrate acidity and porosity, among
others, permitting tuning of catalyst activity.71,75
At present, a limited number of bimetallic combinations
are known to be active as NP arene hydrogenation cata-
lysts.7,8,12,13,51-55,60 It would, therefore be interesting to
screen a large number of bimetallic combinations, in parallel,
to identify new bimetallic catalysts active for arene hydro-
genation under mild conditions (1 atm H2, 22 °C). Taking
into account the many possible variables, including the ratio
of the two metals, metal loading, support types, substrates,
and so forth, it would be incredibly time-consuming to test
each individual catalyst one by one in an empirical fashion.
Recently, combinatorial or high-throughput screening has
(13) Yoon, B.; Wai, C. M. J. Am. Chem. Soc. 2005, 127, 17174–17175.
(14) Park, I. S.; Kwon, M. S.; Kang, K. Y.; Lee, J. S.; Park, J. Adv. Synth.
Catal. 2007, 349, 2039–2047.
(15) Su, F.; Lv, L.; Lee, F. Y.; Liu, T.; Cooper, A. I.; Zhao, X. S. J. Am.
Chem. Soc. 2007, 129, 14213–14223.
(16) Lin, S. D.; Vannice, M. A. J. Catal. 1993, 143, 554–562.
(17) Cunha, D. S.; Cruz, G. M. Appl. Catal., A 2002, 236, 55–66.
(18) Mevellec, V.; Nowicki, A.; Roucoux, A.; Dujardin, C.; Granger, P.;
Payen, E.; Philippot, K. New J. Chem. 2006, 30, 1214–1219.
(19) Marconi, G.; Pertici, P.; Evangelisti, C.; Caporusso, A. M.; Vitulli,
G.; Capannelli, G.; Hoang, M.; Turney, T. W. J. Organomet. Chem. 2004,
689, 639–646.
(20) Spinace, E. V.; Vaz, J. M. Catal. Commun. 2003, 4, 91–96.
(21) Yuan, T.; Fournier, A. R.; Proudlock, R.; Marshall, W. D. Environ.
Sci. Technol. 2007, 41, 1983–1988.
(22) Dominguez-Quintero, O.; Martinez, S.; Henriquez, Y.; D’Ornelas,
L.; Krentzien, H.; Osuna, J. J. Mol. Catal. A: Chem. 2003, 197, 185–191.
(23) Lang, H. F.; May, R. A.; Iversen, B. L.; Chandler, B. D. J. Am. Chem.
Soc. 2003, 125, 14832–14836.
(24) Pawelec, B.; Campos-Martin, J. M.; Cano-Serrano, E.; Navarro,
R. M.; Thomas, S.; Fierro, J. L. G. Environ. Sci. Technol. 2005, 39, 3374–
3381.
(25) Marecot, P.; Mahoungou, J. R.; Barbier, J. Appl. Catal., A 1993, 101,
143–149.
(26) Zhao, A.; Gates, B. C. J. Catal. 1997, 168, 60–69.
(27) Schulz, J.; Roucoux, A.; Patin, H. Chem. Commun. 1999, 535–536.
(28) Schulz, J.; Roucoux, A.; Patin, H. Chem.;Eur. J. 2000, 6, 618–624.
(29) Deshmukh, R. R.; Lee, J. W.; Shin, U. S.; Lee, J. Y.; Song, C. E.
Angew. Chem., Int. Ed. 2008, 47, 8615–8617.
(30) Mu, X. D.; Meng, J. Q.; Li, Z. C.; Kou, Y. J. Am. Chem. Soc. 2005,
127, 9694–9695.
(31) Zhao, C.; Wang, H. Z.; Yan, N.; Xiao, C. X.; Mu, X. D.; Dyson, P. J.;
Kou, Y. J. Catal. 2007, 250, 33–40.
(32) Jacinto, M. J.; Kiyohara, P. K.; Masunaga, S. H.; Jardim, R. F.;
Rossi, L. M. Appl. Catal., A 2008, 338, 52–57.
(33) Schulz, J.; Levigne, S.; Roucoux, A.; Patin, H. Adv. Synth. Catal.
2002, 344, 266–269.
(34) Harada, T.; Ikeda, S.; Ng, Y. H.; Sakata, T.; Mori, H.; Torimoto, T.;
Matsumura, M. Adv. Func. Mater. 2008, 18, 2190–2196.
(35) Zahmakiran, M.; Ozkar, S. Langmuir 2008, 24, 7065–7067.
(36) Hagen, C. M.; Widegren, J. A.; Maitlis, P. M.; Finke, R. G. J. Am.
Chem. Soc. 2005, 127, 4423–4432.
(37) Widegren, J. A.; Finke, R. G. Inorg. Chem. 2002, 41, 1558–1572.
(38) Weddle, K. S.; Aiken, J. D.; Finke, R. G. J. Am. Chem. Soc. 1998,
120, 5653–5666.
(39) Leger, B.; Denicourt-Nowicki, A.; Roucoux, A.; Olivier-Bourbigou,
H. Adv. Synth. Catal. 2008, 350, 153–159.
(40) Pellegatta, J. L.; Blandy, C.; Colliere, V.; Choukroun, R.; Chaudret,
B.; Cheng, P.; Philippot, K. J. Mol. Catal. A: Chem. 2002, 178, 55–61.
(41) Sidhpuria, K. B.; Parikh, P. A.; Bahadur, P.; Jasra, R. V. Ind. Eng.
Chem. Res. 2008, 47, 4034–4042.
(42) Simon, L.; van Ommen, J. G.; Jentys, A.; Lercher, J. A. J. Phys.
Chem. B 2000, 104, 11644–11649.
(43) Hiyoshi, N.; Rode, C. V.; Sato, O.; Masuda, Y.; Yamaguchi, A.;
Shirai, M. Chem. Lett. 2008, 37, 734–735.
(44) Leger, B.; Denicourt-Nowicki, A.; Olivier-Bourbigou, H.; Roucoux,
A. Inorg. Chem. 2008, 47, 9090–9096.
(45) Ohde, H.; Ohde, M.; Wai, C. M. Chem. Commun. 2004, 930–931.
(46) Hiyoshi, N.; Inoue, T.; Rode, C.; Sato, O.; Shirai, M. Catal. Lett.
2006, 106, 133–138.
(47) Graydon, W. F.; Langan, M. D. J. Catal. 1981, 69, 180–192.
(48) Zhang, Z. G.; Okada, K.; Yamamoto, M.; Yoshida, T. Catal. Today
1998, 45, 361–366.
(57) Barbaro, P.; Bianchini, C.; Dal Santo, V.; Meli, A.; Moneti, S.;
Psaro, R.; Scaffidi, A.; Sordelli, L.; Vizza, F. J. Am. Chem. Soc. 2006, 128,
7065–7076.
(58) Hiyoshi, N.; Miura, R.; Rode, C. V.; Sato, O.; Shirai, M. Chem. Lett.
2005, 34, 424–425.
(59) Barbaro, P.; Bianchini, C.; Dal Santo, V.; Meli, A.; Moneti, S.;
Pirovano, C.; Psaro, R.; Sordelli, L.; Vizza, F. Organometallics 2008, 27,
2809–2824.
(60) Fujikawa, T.; Idei, K.; Ebihara, T.; Mizuguchi, H.; Usui, K. Appl.
Catal., A 2000, 192, 253–261.
(61) Roucoux, A. Top. Organomet. Chem. 2005, 16, 261–279.
(62) Liang, C.; Zhao, A.; Zhang, X.; Ma, Z.; Prins, R. Chem. Commun.
2009, 2047–2049.
(63) Narayanan, R.; El-Sayed, M. A. J. Phys. Chem. B 2005, 109, 12663–
12676.
(64) Yoo, J. W.; Hathcock, D. J.; El-Sayed, M. A. J. Catal. 2003, 214, 1–7.
(65) Gao, H.; Angelici, R. J. J. Am. Chem. Soc. 1997, 119, 6937–6938.
(66) Ioannides, T.; Verykios, X. E. J. Catal. 1993, 143, 175–186.
(67) Crump, C. J.; Gilbertson, J. D.; Chandler, B. D. Top. Catal. 2008, 49,
233–240.
(49) Lu, F.; Liu, J.; Xu, H. Adv. Synth. Catal. 2006, 348, 857–861.
(50) Hiyoshi, N.; Osada, M.; Rode, C. V.; Sato, O.; Shirai, M. Appl.
Catal., A 2007, 331, 1–7.
(51) Venezia, A. M.; La Parola, V.; Pawelec, B.; Fierro, J. L. G. Appl.
Catal., A 2004, 264, 43–51.
(68) Lin, S. D.; Vannice, M. A. J. Catal. 1993, 143, 539–553.
(69) Takagi, H.; Isoda, T.; Kusakabe, K.; Morooka, S. Energy Fuels 1999,
13, 1191–1196.
(70) Santana, R. C.; Jongpatiwut, S.; Alvarez, W. E.; Resasco, D. E. Ind.
Eng. Chem. Res. 2005, 44, 7928–7934.
(52) Wan, G.; Duan, A.; Zhao, Z.; Jiang, G.; Zhang, D.; Li,
R.; Dou, T.; Chung, K. H. Energy Fuels 2009, 23, 81–85.
(53) Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley,
P. A. Acc. Chem. Res. 2003, 36, 20–30.
(54) Gelman, F.; Avnir, D.; Schumann, H.; Blum, J. J. Mol. Catal. A:
Chem. 2001, 171, 191–194.
(55) Pawelec, B.; La Parola, V.; Navarro, R. M.; Murcia-Mascaros, S.;
Fierro, J. L. G. Carbon 2006, 44, 84–98.
(56) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757–3778.
(71) Pawelec, B.; Castano, P.; Arandes, J. M.; Bilbao, J.; Thomas, S.;
Pena, M. A.; Fierro, J. L. G. Appl. Catal., A 2007, 317, 20–33.
(72) Park, K. H.; Jang, K.; Kim, H. J.; Son, S. U. Angew. Chem., Int. Ed.
2007, 46, 1152–1155.
(73) Yang, S. Y.; Stock, L. M. Energy Fuels 1998, 12, 644–648.
(74) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003, 198, 317–
341.
(75) Bertolini, J.-C.; Rousset, J.-L. Nanomaterials and Nanochemistry;
Springer: New York, 2008.