Blue-Shifted Absorption of X-Shaped Electro-Optic Chromophore
A R T I C L E S
Chart 1. High-â Chromophoric Building Blocks Used in Self-Assembled Superlattices
chromophore packing, covalently cross-linked microstructural
orientation, high thermal stability, and large EO coefficients.
These characteristics eliminate the need for postdeposition
processes, such as electric field poling, allow ready device
integration, and therefore significantly reduce device design
complexity.9,10 To date, the large-â chromophore building blocks
incorporated into such SAS materials,9,10 as well as those
employed in typical poled polymer4 and Langmuir-Blodgett-
based films,5 are devised according to common design motifs:
conjugated one-dimensional (1D) planar conjugated π systems
with end-capping electron donor and acceptor (D, A) substit-
uents. Chromophores of this type usually exhibit a single intense
low-lying longitudinal charge-transfer (CT) excitation and
possess optical nonlinearities which are essentially 1D in nature,
that is, dominated by a single â tensor component. Considerable,
elegant efforts have striven to increase â by optimizing D/A
strengths and/or the conjugation pathways of such 1D chro-
mophores.11 However, increases in â for such chromophores
are almost invariably accompanied by bathochromic shifts of
the optical maximum, eroding the optical transparency in the
NIR region essential for many EO applications. Furthermore,
molecules with extended π systems and low-lying excited states
are frequently subject to chemical and thermal instability.12
Alternative design strategies at the molecular level would
therefore be desirable, especially for the siloxane-based SAS
strategy building blocks where pyridinium and aminophenyl
fragments are exclusively utilized as D/A functionalities/covalent
linkers, and the key component to tune chromophore molecular
properties is the engineering of the conjugative pathway.9,10
Recent investigations have revealed that unconventional NLO
chromophores with multiple donor-acceptor substituents, hence
multiple intramolecular charge transfer, ranging from dipolar
“X-shaped”13 and “Λ-shaped”14 to octopolar molecules,15 can
afford 2D â tensor character where off-diagonal components
(11) (a) Kang, H.; Facchetti, A.; Zhu, P.; Jiang, H.; Yang, Y.; Cariati, E.;
Righetto, S.; Ugo, R.; Zuccaccia, C.; Macchioni, A.; Stern, C. L.; Liu, Z.;
Ho, S.-T.; Marks, T. J. Angew. Chem., Int. Ed. 2005, 44, 7922. (b) Liao,
Y.; Eichinger, B. E.; Firestone, K. A.; Haller, M.; Luo, J.; Kaminsky, W.;
Benedict, J. B.; Reid, P. J.; Jen, A. K.-Y.; Dalton, L. R.; Robinson, B. H.
J. Am. Chem. Soc. 2005, 127, 2758. (c) Andreu, R.; Blesa, M. J.; Carrasquer,
L.; Gar´ın, J.; Orduna, J.; Villacampa, B.; Alcala´, R.; Casado, J.; Delgado,
M. C. R.; Navarrete, J. T. L.; Allain, M. J. Am. Chem. Soc. 2005, 127,
8835. (d) Staub, K.; Levina, G. A.; Barlow, S.; Kowalczyk, T. C.; Lackritz,
H. S.; Barzoukas, M.; Fort, A.; Marder, S. R. J. Mater. Chem. 2003, 13,
825. (e) Abbotto, A.; Beverina, L.; Bradamante, S.; Facchetti, A.; Klein,
C.; Pagani, G. A.; Redi-Abshiro, M.; Wortmann, R. Chem.sEur. J. 2003,
9, 1991. (f) Barlow, S.; Marder, S. R. Chem. Commun. 2000, 1555. (g)
Jen, A. K.-Y.; Ma, H.; Wu, X.; Wu, J.; Liu, S.; Marder, S. R.; Dalton, L.
R.; Shu, C.-F. SPIE Proc. 1999, 3623, 112. (h) Albert, I. D. L.; Marks, T.
J.; Ratner, M. A. J. Am. Chem. Soc. 1997, 119, 6575.
(6) (a) Bakiamoh, S. B.; Blanchard, G. J. Langmuir 2001, 17, 3438. (b) Neff,
G. A.; Helfrich, M. R.; Clifton, M. C.; Page, C. J. Chem. Mater. 2000, 12,
2363. (c) Flory, W. C.; Mehrens, S. M.; Blanchard, G. J. J. Am. Chem.
Soc. 2000, 122, 7976. (d) Roberts, M. J.; Lindsay, G. A.; Herman, W. N.;
Wynne, K. J. J. Am. Chem. Soc. 1998, 120, 11202. (e) Hanken, D. G.;
Naujok, R. R.; Gray, J. M.; Corn, R. M. Anal. Chem. 1997, 69, 240. (f)
Katz, H. E.; Wilson, W. L.; Scheller, G. J. Am. Chem. Soc. 1994, 116,
6636.
(7) (a) Van Cott, K. E.; Guzy, M.; Neyman, P.; Brands, C.; Heflin, J. R.;
Gibson, H. W.; Davis, R. M. Angew. Chem., Int. Ed. 2002, 17, 3226. (b)
Facchetti, A.; van der Boom, M. E.; Abbotto, A.; Beverina, L.; Marks, T.
J.; Pagani, G. A. Langmuir 2001, 17, 5939. (c) Huang, W.; Helvenston,
M.; Casson, J. L.; Wang, R.; Bardeau, J.-F.; Lee, Y.; Johal, M. S.; Swanson,
B. I.; Robinson, J. M.; Li, D.-Q. Langmuir 1999, 15, 6510. (d) Li, D.-Q.;
Swanson, B. I.; Robinson, J. M.; Hoffbauer, M. A. J. Am. Chem. Soc. 1993,
115, 6975.
(12) Galvan-Gonzalez, A.; Belfield, K. D.; Stegeman, G. I.; Canva, M.; Marder,
S. R.; Staub, K.; Levina, G.; Twieg, R. J. J. Appl. Phys. 2003, 94, 756 and
references therein.
(8) (a) Facchetti, A.; Annoni, E.; Beverina, L.; Morone, M.; Zhu, P.; Marks,
T. J.; Pagani, G. A. Nat. Mater. 2004, 3, 910. (b) Zhu, P.; Kang, H.;
Facchetti, A.; Evmenenko, G.; Dutta, P.; Marks, T. J. J. Am. Chem. Soc.
2003, 125, 11496.
(9) (a) Zhu, P.; Kang, H.; van der Boom, M. E.; Liu, Z.; Xu, G.; Ma, J.; Zhou,
D.; Ho, S.-T.; Marks, T. J. SPIE Sympos. Proc. 2004, 5621, 105. (b) van
der Boom, M. E.; Evmenenko, G.; Yu, C.; Dutta, P.; Marks, T. J. Langmuir
2003, 19, 10531. (c) Zhu, P.; van der Boom, M. E.; Kang, H.; Evmenenko,
G.; Dutta, P.; Marks, T. J. Chem. Mater. 2002, 14, 4982. (d) van der Boom,
M. E.; Evmenenko, G.; Dutta, P.; Marks, T. J. Langmuir 2002, 18, 3704.
(e) van der Boom, M. E.; Richter, A. G.; Malinsky, J. E.; Dutta, P.; Marks,
T. J. Chem. Mater. 2001, 13, 15.
(10) (a) Facchetti, A.; Abbotto, A.; Beverina, L.; van der Boom, M. E.; Dutta,
P.; Evmenenko, G.; Pagani, G. A.; Marks, T. J. Chem. Mater. 2003, 15,
1064. (b) Facchetti, A.; Abbotto, A.; Beverina, L.; van der Boom, M. E.;
Dutta, P.; Evmenenko, G.; Pagani, G. A.; Marks, T. J. Chem. Mater. 2002,
14, 4996. (c) Lin, W.; Lee, T.-L.; Lyman, P. F.; Lee, J.; Bedzyk, M. J.;
Marks, T. J. J. Am. Chem. Soc. 1997, 119, 2205. (d) Lin, W.; Lin, W.;
Wong, G. K.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 8034. (e) Yitzchaik,
S.; Marks, T. J. Acc. Chem. Res. 1996, 29, 197. (f) Lin, W.; Yitzchaik, S.;
Lin, W.; Malik, A.; Durbin, M. K.; Richter, A. G.; Wong, G. K.; Dutta,
P.; Marks, T. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1497. (g) Li, D.-
Q.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 1990, 112, 7389.
(13) (a) Sullivan, P. A.; Bhattacharjee, S.; Eichinger, B. E.; Firestone, K.;
Robinson, B. H.; Dalton, L. R. SPIE Proc. 2004, 5351, 253. (b) Wortmann,
R.; Lebus-Henn, S.; Reis, H.; Papadopoulos, M. G. THEOCHEM 2003,
633, 217. (c) Qin, A.; Bai, F.; Ye, C. THEOCHEM 2003, 631, 79. (d) Qin,
A.; Yang, Z.; Bai, F.; Ye, C. J. Polym. Sci., Part A 2003, 41, 2846. (e)
Kang, H.; Li, S.; Wang, P.; Wu, W.; Ye, C. Synth. Met. 2001, 121, 1469.
(f) Wang, P.; Zhu, P.; Wu, W.; Kang, H.; Ye, C. Phys. Chem. Chem. Phys.
1999, 1, 3519. (g) Nalwa, H. S.; Watanabe, T.; Miyata, S. AdV. Mater.
1995, 7, 754.
(14) (a) Yang, M.; Champagne, B. J. Phys. Chem. A 2003, 107, 3942. (b)
Ostroverkhov, V.; Petschek, R. G.; Singer, K. D.; Twieg, R. J. Chem. Phys.
Lett. 2001, 340, 109. (c) Van Elshocht, S.; Verbiest, T.; Kauranen, M.;
Ma, L.; Cheng, H.; Musick, K.; Pu, L.; Persoons, A. Chem. Phys. Lett.
1999, 309, 315. (d) Wolff, J. J.; La¨ngle, D.; Hillenbrand, D.; Wortmann,
R.; Matschiner, R.; Glania, C.; Kra¨mer, P. AdV. Mater. 1997, 9, 138. (e)
Wortmann, R.; Glania, C.; Kra¨mer, P.; Matschiner, R.; Wolff, J. J.; Kraft,
S.; Treptow, B.; Barbu, E.; La¨ngle, D.; Go¨rlitz, G. Chem.sEur. J. 1997,
3, 1765. (f) Moylan, C. R.; Ermer, S.; Lovejoy, S. M.; McComb, I.-H.;
Leung, D. S.; Wortmann, R.; Kra¨mer, P.; Twieg, R J. Am. Chem. Soc.
1996, 118, 12950. (g) Wong, M. S.; Nicoud, J.-F.; Runser, C.; Fort, A.;
Barzoukas, M.; Marchal, E. Chem. Phys. Lett. 1996, 253, 141. (h)
Wortmann, R.; Kra¨mer, P.; Glania, C.; Lebus S.; Detzer, N. Chem. Phys.
1993, 173, 99.
9
J. AM. CHEM. SOC. VOL. 128, NO. 18, 2006 6195