V. Nair et al. / Tetrahedron Letters 48 (2007) 9018–9020
9019
R
RO2C
CO2R
Ph3P
R
N
N
N
Ph3P
N
H
O
OR
RO2C
O
O
5
6
R
RO2C
Figure 1. ORTEP diagram for compound 4a.
N
N
CO2R
-PPh3=O
R
N
OR
O
N
H
PPh3
O
O
Table 1. Reactions of aldehydes with TPP-azoester zwitterion
8
7
RO
O
NHCO2R
R3
O
CHO
R3 RO2C
+
CO2R
- ROCN
N
H
N
N
THF, rt, 6 h, Ar
R2
9
PPh3
+
R2
CO2R
R
R1
R1
10
3
2
4
1
Scheme 2.
Entry
R
R1
Isopropyl Cl
Isopropyl
R2
R3 Product Yield (%)
1
2
3
4
5
6
7
8
9
Cl
NO2
H
H
Cl
H
F
H
H
H
Cl
H
H
H
H
H
H
H
H
H
H
H
F
4b
4c
4d
4e
4f
85
76
Acknowledgments
H
Isopropyl Br
Isopropyl Cl
50 (67)a
78
Financial assistance from the Council of Scientific and
Industrial Research (CSIR), New Delhi is acknowl-
edged. The authors thank Priya M. Nair, Soumini
Mathew and Sreemathi Viji for recording IR spectra,
NMR spectra, and mass spectra, respectively.
Isopropyl
Isopropyl
Isopropyl
Isopropyl
Isopropyl
Ethyl
Ethyl
Ethyl
Ethyl
Ethyl
H
F
F
H
75
75
86
4g
4h
4i
37 (83)a
64
H
H
H
H
H
H
H
H
H
4j
10
11
12
13
14
15
16
CF3
Cl
NO2
Br
Cl
F
4k
4l
86
74
73
64
71
75
89
References and notes
4m
4n
4o
4p
4q
1. (a) Cookson, R. C.; Locke, J. M. J. Chem. Soc. 1963,
6062; (b) Brunn, E.; Huisgen, R. Angew. Chem., Int. Ed.
Engl. 1969, 8, 513; (c) Huisgen, R. In The Adventure
Playground of Mechanisms and Novel Reactions: Profiles;
Seeman, J. I., Ed.; Pathways and Dreams; American
Chemical Society: Washington DC, 1994; p 62.
2. (a) Mitsunobu, O.; Eguchi, M. Bull. Chem. Soc. Jpn. 1971,
44, 3427; (b) Mitsunobu, O. Synthesis 1981, 1.
3. Liu, Y.; Xu, C.; Liu, L. Synthesis 2003, 1335.
4. Otte, R. D.; Sakata, T.; Guzei, I. A.; Lee, D. Org. Lett.
2005, 7, 495. These authors have observed that aliphatic
aldehydes on reaction with a phosphine-azoester zwitter-
ion delivered bis-adducts; no work on aryl aldehydes was
reported.
5. Girard, M.; Murphy, P.; Tsou, N. Tetrahedron Lett. 2005,
46, 2449.
6. (a) Nair, V.; Biju, A. T.; Abhilash, K. G.; Menon, R. S.;
Suresh, E. Org. Lett. 2005, 7, 2121; (b) Nair, V.; Biju, A.
T.; Mathew, S. C. Synthesis 2007, 697.
7. Nair, V.; Mathew, S. C.; Biju, A. T.; Suresh, E. Angew.
Chem., Int. Ed. 2007, 46, 2070.
8. Nair, V.; Biju, A. T.; Vinod, A. U.; Suresh, E. Org. Lett.
2005, 7, 5139.
Ethyl
tert-Butyl Cl
Cl
a Recovered yield.
The reaction was found to be general with a variety of
aromatic aldehydes. The results are summarized in
Table 1.
The following mechanistic postulate may be invoked to
rationalize the formation of the acyl carbamate from
aldehyde. Initially zwitterion 5 generated from the azo-
dicarboxylate and triphenylphosphine adds to the alde-
hyde carbonyl to form intermediate 7 which then
eliminates triphenylphosphine oxide by a well prece-
dented step to form the oxadiazoline derivative 8. It is
conceivable that the oxadiazoline can undergo ring frag-
mentation and concomitant hydride transfer to deliver
the acyl carbamate 10 with the loss of alkyl cyanate.
Although we have no direct evidence for this mechanis-
tic pathway, the detection of a peak corresponding to
the alkyl cyanate (m/z = 85.46, R = iPr) 9 in the low
resolution mass spectrum of the reaction mixture may
validate the proposed mechanism (Scheme 2).
9. Nair, V.; Biju, A. T.; Mohanan, K.; Suresh, E. Org. Lett.
2006, 8, 2213.
10. (a) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash,
N.; Biju, A. T. Acc. Chem. Res. 2006, 39, 520; (b) Nair, V.;
Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.;
Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36,
899.
11. Seiller, B.; Heins, D.; Bruneau, C.; Dixneuf, P. H.
Tetrahedron 1995, 51, 10901.
12. (a) Wellinga, K.; Mulder, R.; van Daalen, J. J. J. Agric.
Food. Chem. 1973, 21, 348; Wellinga, K.; Mulder, R.; van
In conclusion, we have developed a novel, direct trans-
formation of aromatic aldehydes to acyl carbamates. It
is reasonable to assume that this reaction will be useful
in organic synthesis.