vacuum for 24 h to obtain the catalyst. There were three kinds
of quaternary ammonium, including [(C12H25)N(CH3)3]Cl,
[(C18H37)2N(CH3)2]Cl and [(C18H37)N(CH3)3]Cl.
The 127I chemical shifts were referenced to solid NaI. d = 3092,
3116 ppm, IR: n = 942, 910, 720, 691, 629 cm-1
supported by the SKLC cooperation project (N-08-08) and the
PhD fund of Yaitai University (HY07B33).
References
1 A. Rothlisberger and R. Prins, J. Catal., 2005, 235, 229.
2 D. Chapados, S. E. Bonde, W. L. Gore, G. Dolbear and E. Skov,
NPRA Annual Meeting, 2000AM-00-25.
Characterization of the product after the aerobic oxidation of
DBT
3 C. Li, Z. X. Jiang, J. B. Gao, Y. X. Yang, S. J. Wang, F. P. Tian, F. X.
Sun, X. P. Sun, P. L. Ying and C. R. Han, Chem.–Eur. J., 2004, 10,
2277.
4 H. Y. Lu, J. B. Gao, Z. X. Jiang, F. Jing, Y. X. Yano, G. Wang and
C. Li, J. Catal., 2006, 239, 369.
5 J. B. Gao, Y. N. Zhang, G. Q. Jia, Z. X. Jiang, S. G. Wang, H. Y. Lu,
B. Song and C. Li, Chem. Commun., 2008, 332.
6 J. M. Campos-Martin, M. C. Capel-Sanchez and J. L. G. Fierro,
Green Chem., 2004, 6, 557.
7 J. Nehlsen, J. Benziger and I. Kevrekidis, Ind. Eng. Chem. Res., 2006,
45, 518.
After the oxidation of DBT, the water bath was cooled to room
temperature and kept at this temperature for 24 h. Then, white
needle-type crystals (dibenzothiophene sulfone) were formed.
The crystals were filtered and washed with n-heptane three times
and dried at 50 ◦C in a vacuum for 24 h. The infrared spectrum
of the product, diluted with KBr and pressed into a pellet, was
recorded on a Nicolet 470 FT-IR spectrometer.
Oxidation of model sulfur-containing compounds
8 S. Otsuki, T. Nonaka, N. Takashima, W. H. Qian, A. Ishihara, T.
Imai and T. Kabe, Energy Fuels, 2000, 14, 1232.
9 Y. Shiraishi, K. Tachibana, T. Hirai and I. Komasawa, Ind. Eng.
Chem. Res., 2002, 41, 4362.
In a typical experiment, a water bath was heated to 80 ◦C.
The model sulfur-containing compound (BT, DBT or 4,6-
DMDBT) was dissolved in 50 mL of decalin in a flask, the
sulfur concentration being 500 ppm. The catalyst Q5IMo6O24
(0.01 mmol) was added to the solution and the obtained
mixture stirred at 1000 rpm for 5 min. Molecular oxygen was
then bubbled through the reaction solution. The solution was
periodically sampled, and the sulfur content of the upper clear
solution was determined by microcoulometry after the catalyst
and sulfones had been precipitated by centrifugation.
10 F. M. Collins, A. R. Lucy and C. Sharp, J. Mol. Catal. A: Chem.,
1997, 117, 397.
11 L. Y. Kong, G. Li and X. S. Wang, Catal. Today, 2004, 93–95,
341.
12 H. M. Li, W. S. A. Zhu, Y. Wang, J. T. Zhang, J. D. Lu and Y. S. Yan,
Green Chem., 2009, 11, 810.
13 W. S. Zhu, H. M. Li, X. Jiang, Y. S. Yan, J. D. Lu, L. N. He and J. X.
Xia, Green Chem., 2008, 10, 641.
14 A. Chica, A. Corma and M. E. Domine, J. Catal., 2006, 242,
299.
15 K. J. Stanger and R. J. Angelici, Energy Fuels, 2006, 20,
1757.
Analysis of sulfur content
16 F. Shibahara, A. Suenami, A. Yoshida and T. Murai, Chem.
Commun., 2007, 2354.
The total sulfur content of the samples was determined by
microcoulometry (detection limit: 0.1 ng mL-1). The sulfur-
containing compounds present in diesel were analyzed by a gas
chromatograph coupled to a flame photometric detector (GC-
FPD). Gas chromatography: Agilent 6890 N equipped with
a capillary column (PONA, 50 m ¥ 0.2 mm, id ¥ 0.5 mm),
flame photometric detector (FPD): Agilent H9261. The analysis
conditions were as follows: injection port temperature: 280 ◦C,
detector temperature: 250 ◦C, oven temperature program:
17 S. Murata, K. Murata, K. Kidena and M. Nomura, Energy Fuels,
2004, 18, 116.
18 J. T. Sampanthar, H. Xiao, H. Dou, T. Y. Nah, X. Rong and W. P.
Kwan, Appl. Catal., B, 2006, 63, 85.
19 H. Y. Lu, J. B. Gao, Z. X. Jiang, Y. X. Yang, B. Song and C. Li,
Chem. Commun., 2007, 150.
20 D. Lenoir, Angew. Chem., Int. Ed., 2006, 45, 3206.
21 J. F. Liu, P. G. Yi and Y. S. Qi, J. Mol. Catal. A: Chem., 2001, 170,
109.
22 D. Sloboda-Rozner and R. Neumann, Green Chem., 2006, 8,
679.
23 A. M. Khenkin and R. Neumann, Adv. Synth. Catal., 2002, 344,
1017.
◦
◦
◦
100 C, hold for 1 min, 100–150 C at a 10 C min-1 gradient,
◦
hold for 1 min, 150–280 ◦C at a 5 C min-1 gradient, hold
24 S. D. Kadam, A. R. Supale and G. S. Gokavi, Z. Phys. Chem., 2008,
for 12 min, split ratio: 1/100, carrier gas: ultra-pure nitrogen,
column flow: 0.9 mL min-1, reagent gases air flow: 100 mL min-1,
hydrogen flow: 75 mL min-1, the injection volume of the sample
was 1 mL.
222, 635.
25 A. R. Supale and G. S. Gokavi, Phosphorus, Sulfur Silicon Relat.
Elem., 2010, 185, 725.
26 K. Ohkubo and T. Yamabe, Bull. Jpn. Petrol. Inst., 1970, 12,
130.
27 K. Ohkubo and H. Kanaeda, Bull. Jpn. Petrol. Inst., 1971, 13,
177.
Acknowledgements
28 K. Ohkubo and K. Yoshinaga, Bull. Jpn. Petrol. Inst., 1977, 19,
73.
We are thankful for financial support provided by the State
Key Project (grant no. 2006CB202506). This work also partly
29 M. Filowitz, R. K. C. Ho, W. G. Klemperer and W. Shum, Inorg.
Chem., 1979, 18, 93.
1958 | Green Chem., 2010, 12, 1954–1958
This journal is
The Royal Society of Chemistry 2010
©