C O M M U N I C A T I O N S
Figure 3. Selectivity analysis toward Cu(II), Co(II), Cd(II), Ni(II). Reaction
conditions are same as in Figure 1 except that Cu(II), Co(II), Ni(II), and
Cd(II) concentrations are 0.015 mM.
Figure 1. Initial rate analysis. Reaction conditions: [1] ) 0.5 mM, [PAC]
) 0.025 mM, [Pd(II)] ) 0.025 mM in CH3CN/H2O (10:1 v/v), under argon,
temperature ) 60 °C.
time, nearly 1.5 h. However, the study described here demonstrates
a new principle for signal enhancement in molecular sensing.
Clearly the use of faster organometallic reactions will significantly
improve the practicality of the general method.
Acknowledgment. This work was supported by a grant from
the National Institutes of Health (EB00549-5).
Supporting Information Available: Spectroscopic and controlling
experimental data and general procedure (PDF). This material is
References
(1) (a) Swager, T. M. Acc. Chem. Res. 1998, 31, 201. (b) Ehret, A.; Spitler,
M. T.; Stuhl, L. S. Comments Inorg. Chem. 2002, 23, 275. (c) Blaedel,
W. J.; Boguslaski, R. C. Anal. Chem. 1978, 50, 1026. (d) Shibata, T.;
Yamamoto, J.; Matsumoto, N.; Yonekabo, s.; Osanai, S.; Soai, K. J. Am.
Chem. Soc. 1998, 120, 12157.
(2) Kim, Y.; Zhu, Z.; Swager, T. M. J. Am. Chem. Soc. 2004, 126, 452.
(3) Kim, T.; Swager, T. M. Angew. Chem., Int. Ed. 2003, 42, 4803.
(4) Kuroda, K.; Swager, T. M. Macromol. Symp. 2003, 201, 127.
(5) Yashima, E.; Maeda, k.; Nishimura, T. Chem. Eur. J. 2004, 10, 42.
(6) Hartig, J. S.; Gru¨ne, I.; Najafi-Shoushtari, S. H.; Famulok, M. J. Am.
Chem. Soc. 2004, 126, 722.
(7) Brunner, J.; Mokhir, A.; Kremer, R. J. Am. Chem. Soc. 2003, 125, 12410.
(8) Ellington, A. D.; Levy, M. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 6416.
(9) (a) Hang, H. C.; Yu, C.; Pratt, M. P.; Bertozzi, C. R. J. Am. Chem. Soc.
2004, 126, 6. (b) Shibata, H.; Sasaki, N.; et al. J. Vet. Med. Sci. 2003, 65,
1207. (c) Reymond, J.-L. J. Immunol. Methods 2002, 269, 125. (d) Jean,
J.; Blais, B.; Darveau, A.; Fliss, I. FEMS Microbiol. Lett. 2002, 210, 143.
(e) Steinert, S. A.; Pickwell, G. V. Mar. EnViron. Res. 1984, 14, 229.
(10) Zhu, L.; Anslyn, E. A. Tetrahedron 2004, 60, 7267.
Figure 2. Slope (initial rates) vs [Cu(II)]. [Cu(II)] was decreased from
500 to 30 nM. Reaction conditions are the same as in Figure 1.
decreasing the Cu(II) concentration, the initial rates dropped
correspondingly. A plot of slope values as a function of Cu(II)
concentration is linear, as shown in Figure 2. This linear relationship
implies that 1 equiv of Cu(II) frees a consistent amount of Pd(II).
Many transition metals have high affinities to poly-aza macro-
cyclic ligands.17 Therefore, we sought to test the selectivity of our
sensing protocol to various metals. Cu(II) has the highest affinity
to cyclam 1. Hence, we used the same protocol as with Cu(II)
described above, but for the metal ions Ni(II), Co(II), and Cd(II),
all of which have lower affinities. Figure 3 shows that the catalytic
production of fluorophore 2 tracks the affinities of the cyclam for
Cu(II), Ni(II), Co(II), and Cd(II). The higher the binding affinity,
the greater the initial rate observed. As indicated in Figure 3, when
Cu(II) was present in the system the initial rate was almost 3-fold
that of Co(II) and 6-fold those of Ni(II) and Cd(II). These relative
selectivities support the mechanism given herein for the sensing
method. While a particular metal ion in a mixture would be difficult
to distinguish with these small selectivity ratios, other ligands may
improve the selectivity.
(11) (a) Marzouk, S. A. M.; AI-Ariqui, W. T.; Hassan, S. S. M. Anal. Bioanal.
Chem. 2003, 375, 1186. (b) Grandini, P.; Mancin, F.; Tecilla, P.; Scrimin,
P.; Tonellato, U. Angew. Chem., Int. Ed. 1999, 38, 3061. (c) Kra¨mer, R.
Angew. Chem., Int. Ed. 1998, 37, 772. (d) Dujols, V.; ford, F.; Czarnik,
A. W. J. Am. Chem. Soc. 1997, 119, 7386. (e) Zeng, H.; Thompson, R.
B.; Maliwal, B. P.; Fones, G. R.; Moffett, J. W.; Fierke, C. A. Anal. Chem.
2003, 75, 6807.
(12) Yang, W.; Jaramillo, D.; Gooding, J.; Hibbert, D. B.; Zhang, R.; Willett,
G. D.; Fisher, K. J. Chem. Commun. 2001, 1982.
(13) Genet, J. P.; Blart, E.; Savignal, M. Synlett 1992, 715.
(14) Eftink, M. R.; Jia, Y.; Hu, D. J. Phys. Chem. 1995, 99, 5713.
(15) (a) Sonawane, H. R.; Nanjundiah, B. S.; Panse, M. D. Tetrahedron. Lett.
1985, 26, 3507. (b) Ogata, Y.; Takagi, K. Tetrahedron 1971, 27, 1573.
(16) 2-Iodo-N-allylaniline 2 does not display fluorescence because of the
internal heavy element effect resulting from the iodine substituting on
the aromatic ring, while the iodine is also a potential source to occur
photoreaction with terminal alkene. Measurement spectra are shown in
Supporting Information.
In conclusion, signal amplification using an intramolecular
organometallic catalytic reaction has been shown to yield a very
sensitive sensing technique. Our specific example using a Heck
reaction has high sensitivity and reasonable selectivity for Cu(II).
Admittedly, to achieve a response for 30 nM Cu(II) required a long
(17) (a) Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen,
J. J. Chem. ReV. 1985, 85, 271. (b) Christensen, J. J.; Eatough, D. J.;
Izatt, R. M. Chem. ReV. 1974, 74, 351.
JA0401038
9
J. AM. CHEM. SOC. VOL. 126, NO. 45, 2004 14683