10.1002/chem.201904651
Chemistry - A European Journal
COMMUNICATION
originating from the acceptor NDI unit rather than charge-transfer
in nature (Figure S7-S9). These experiments provides an
unequivocal proof for the co-existence of both DF and RTP
emission in the red-wavelength region with excellent quantum
yield. To the best of our knowledge, this is the first report of dual
DF and RTP from donor-acceptor cNDI derivatives under ambient
conditions.[12] Direct excitation at the charge-transfer band at 500
nm, also resulted in similar spectroscopic features suggesting
that triplet state harvesting is possible via both LE and CT states
(Figure S10).
On the other hand, PMMA (1 wt. %) films of CzNDI showed
a weak CT emission (exc. = 380 nm) in the 550-800 nm region
unlike its non-fluorescent nature in solution state (Figure 3e) with
a prompt lifetime of 3.45 ns (exc. = 373 nm, monitored = 680 nm),
probably due to a non-orthogonal, excited state conformation in
the solid-state (Figure S11). Delayed emission feature is also
observed for CzNDI films at 300 K as confirmed by a gated
emission spectrum (delay time = 50 µs, exc. = 380 nm) in the
same wavelength region (550-800 nm, max. = 680 nm) hinting
towards similar DF and RTP characteristics like CzPhNDI (Figure
3a and 3e). Time-gated emission spectra (20 ms delay time, exc.
= 380 nm) obtained at 15 K showed a 80 nm red-shift compared
to room temperature steady-state emission (Figure 3e). This low
energy emission with a maximum at 680 nm, can be attributed to
the locally excited phosphorescence because of its high lifetime
(tavg.= 3.1 ms, exc. = 380 nm, monitored = 680 nm) (Figure 3f, Figure
S12a). However, unlike CzPhNDI, this phosphorescence band
neither originates from carbazole (donor) or NDI (acceptor)
components (Figure S12b). Similar phosphorescence behaviour
at low temperatures has been recently shown in donor-acceptor
cNDI derivatives, wherein certain conformations of the molecule
lead to enhanced conjugation between the donor (triphenyl
amine) and acceptor sub-units (NDI) resulting in new locally
excited triplet state.[13b] In addition, gradual decrease in the
lifetime on increasing the temperature (Figure 3f) reiterates (3.1
ms at 15 K to 80.5 µs at 300 K, exc. = 380 nm, monitored = 680 nm)
its phosphorescence character similar to CzPhNDI at this
wavelength. Accordingly, temperature dependent steady-state
emission also showed a gradual red-shift (652 nm to 672 nm) and
enhanced emission intensity on decreasing the temperature
(Figure S13). Presence of triplet mediated (ΔEST = 0.15 ± 0.02 eV)
deep-red-NIR dual DF and RTP emission was further confirmed
via various experiments (Figure S14-S16). However, overall
quantum yield (2 %) was found to be much weaker than
CzPhNDI.
In conclusion, we have shown an efficient dual DF and RTP
emission under ambient and amorphous conditions from cNDI
derivatives by a clever molecular design to facilitate the triplet
harvesting. Time-resolved photoluminescence studies and
TDDFT calculations further provided
a structure-property
relationship to fine-tune the emission oscillator strength and
charge-transfer states of these donor-acceptor molecules. We
envisage that this study opens up an exciting, hitherto unexplored
triplet harvesting of interesting class of cNDI family, by using the
well-established, rich chemistry of core-substitution. Further
extension of these designs to other electron deficient arylene
diimides would be the next step to achieve NIR-emitting triplet-
emitting dyes for applications in bio-imaging and OLEDs.[18]
[5]
Int. Ed. 2017, 56, 13066-13069.
Acknowledgements
Funding from Technology Research Centre at JNCASR
(JNC/DST/TRC/SJG-KSN/4397) & DST-JNCASR Nanomission
Project (SR/NM/TP-25/2016) by Government of India are greatly
acknowledged. S. K. thanks UGC; A. G. and P. K. S. thank
JNCASR for fellowship. The authors thank Prof. Satish Patil,
SSCU, IISc for fruitful discussions.
[6]
[7]
R. E. Dawson, A. Hennig, D. P. Weimann, D. Emery, V. Ravikumar, J.
Montenegro, T. Takeuchi, S. Gabutti, M. Mayor, J. Mareda, C. A.
Schalley, S. Matile, Nat. Chem. 2010, 2, 533-538.
a) Y. Kumar, S. Kumar, K. Mandal, P. Mukhopadhyay, Angew. Chem.
Int. Ed. 2018, 57, 16318-16322; b) S. Kumar, M. R. Ajayakumar, G.
Hundal, P. Mukhopadhyay, J. Am. Chem. Soc. 2014, 136, 12004-12010;
c) G. Bẽlanger-Chabot, A. Ali, F. P. Gabbaï, Angew. Chem. Int. Ed. 2017,
56, 9958-9961.
Keywords: Donor-acceptor systems• Naphthalenediimide•
Delayed Fluorescence• Room Temperature Phosphorescence •
Charge-transfer.
[8]
[9]
P. D. Frischmann, K. Mahata, F. Würthner, Chem. Soc. Rev. 2013, 42,
1847-1870.
Int. Ed. 2017, 56, 13767-13771; b) R. Sethy, J. Kumar, R. Métivier, M.
Louis, K. Nakatani, N. Mohan, T. Mecheri, A. Subhakumari, K. G.
Thomas, T. Kawai, T. Nakashima, Angew. Chem. Int. Ed. 2017, 56,
15053-15056; c) A. Takai, M. Takeuchi, Bull. Chem. Soc. Jpn. 2018, 91,
44–51.
[1]
[2]
a) N. Sakai, J. Mareda, E. Vauthey, S. Matile, Chem. Commun. 2010,
46, 4225-4237; b) S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc.
Rev. 2008, 37, 331-342.
a) J. H. Oh, S.-L. Suraru, W.-Y. Lee, M. Könemann, H. W. Höffken, C.
Röger, R. Schmidt, Y. Chung, W.-C. Chen, F. Würthner, Z. Bao, Adv.
Funct. Mater. 2010, 20, 2148-2156; b) T. He, M. Stolte, F. Würthner Adv.
Mater. 2013, 25, 6951-6955; c) H. Yan, Z. Chen, Y. Zheng, C. Newman,
J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature 2009, 457, 679-
686.
[10] a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,
492, 234-238; b) M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29,
1605444.
[11] a) P. Ganesan, J. Baggerman, H. Zhang, E. J. R. Sudhölter, H. Zuilhof,
J. Phys. Chem. A 2007, 111, 6151-6156; b) O. Yushchenko, G. Licari, S.
Mosquera-Vazquez, N. Sakai, S. Matile, E. Vauthey, J. Phys. Chem. Lett.
2015, 6, 2096-2100.
[3]
[4]
a) S.-L. Suraru, F. Würthner, Angew. Chem. Int. Ed. 2014, 53, 7428-
7448; b) F. Würthner, S. Ahmed, C. Thalacker, T. Debaerdemaeker,
Chem. Eur. J. 2002, 8, 4742-4750; b) C. Röger, F. Würthner, J. Org.
Chem. 2007, 72, 8070-8075; c) R. S. K. Kishore, V. Ravikumar, G.
Bernardinelli, N. Sakai, S. Matile, J. Org. Chem. 2008, 73, 738-740; d) A.
Takai, T. Yasuda, T. Ishizuka, T. Kojima, M. Takeuchi, Angew. Chem.
Int. Ed. 2013, 52, 9167-9171.
[12] a) S. Kuila, K. V. Rao, S. Garain, P. K. Samanta, S. Das, S. K. Pati, M.
Eswaramoorthy, S. J. George, Angew. Chem. Int. Ed. 2018, 57, 17115-
17119; b) V. Martinez-Martinez, R. S. Llano, S. Furukawa, Y. Takashima,
I. L. Arbeloa, S. Kitagawa, ChemPhysChem 2014, 15, 2517-2521.
[13] a) J. H. Kim, J. H. Yun, J. Y. Lee, Adv. Opt. Mater. 2018, 6, 1800255; b)
H. F. Higginbotham, P. Pander, R. Rybakiewicz, M. K. Etherington, S.
Maniam, M. Zagorska, A. Pron, A. P. Monkman, P. Data, J. Mater. Chem.
C 2018, 6, 8219-8225; c) F. B. Dias, J. Santos, D. R. Graves, P. Data,
a) S. Guha, S. Saha, J. Am. Chem. Soc. 2010, 132, 17674-17677; b) S.
2012, 134, 13679-13691.
4
This article is protected by copyright. All rights reserved.