Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Organic Letters
Letter
L.; Bernhardt, P.; Nam, S.; Loesgen, S.; Ruby, J.; Skewes-Cox, P.;
Jensen, P.; Fenical, W.; Moore, B. J. Am. Chem. Soc. 2012, 134,
11988−11991. (h) Ronzitti, G.; Callegari, F.; Malaguti, C.; Rossini, G.
Br. J. Cancer 2004, 90, 1100−1107.
pentane 7. The free alcohol of the resulting product 51 was
subsequently activated by forming the corresponding tert-butyl
carbonate 6. The final tetraepoxide opening cascade reaction
was then initiated in the presence of the BF3·OEt2 catalyst at
−40 °C.4 Following acetylation of the secondary alcohol, RST
fragment 1 of maitotoxin was obtained. To the best of our
knowledge, this is the first tetraepoxide opening cascade that
has been performed to synthesize a natural product fragment
containing both six- and seven-membered rings.
In conclusion, we have demonstrated the Ni-catalyzed cross-
electrophile coupling of activated allyl alcohols with vinyl
bromides as a general strategy for constructing skipped
polyenes displaying high (E)-selectivity. This method has
been applied to the synthesis of the all-(E), all-linear pentaene
7, which we have further shown is a viable precursor for the
synthesis of the challenging RST fragment of maitotoxin 1.
(2) (a) Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189−1192.
(b) Morten, C.; Jamison, T. F. J. Am. Chem. Soc. 2009, 131, 6678−
6679. (c) Katcher, M.; Jamison, T. Tetrahedron 2018, 74, 1111−1122.
(3) (a) Trost, B.; Gholami, H. J. Am. Chem. Soc. 2018, 140, 11623−
11626. (b) Macklin, T.; Micalizio, G. Nat. Chem. 2010, 2, 638−643.
(4) (a) McDonald, F. E.; Bravo, F.; Wang, X.; Wei, X.; Toganoh, M.;
Rodriguez, J. R.; Do, B.; Neiwert, W. A.; Hardcastle, K. J. Org. Chem.
2002, 67, 2515−2523. (b) Bravo, F.; McDonald, F.; Neiwert, W.;
Hardcastle, K. Org. Lett. 2004, 6, 4487−4489. (c) Nakanishi, K.
Toxicon 1985, 23, 473−479. (d) Nicolaou, K. Angew. Chem., Int. Ed.
Engl. 1996, 35, 588−607.
(5) (a) Anka-Lufford, L. L.; Prinsell, M.; Weix, D. J. Org. Chem.
2012, 77, 9989−10000. (b) Cui, X.; Wang, S.; Zhang, Y.; Deng, W.;
Qian, Q.; Gong, H. Org. Biomol. Chem. 2013, 11, 3094−3097.
́
(c) Gomes, P.; Gosmini, C.; Perichon, J. Org. Lett. 2003, 5, 1043−
ASSOCIATED CONTENT
* Supporting Information
1045.
■
(6) Seomoon, D.; Lee, K.; Kim, H.; Lee, P. Chem. - Eur. J. 2007, 13,
5197−5206.
S
The Supporting Information is available free of charge on the
(7) The use of dried versus nondried DMA did not affect the
amount of hydrolysis observed, so we suspect that the hydrolysis of
the starting material is catalyzed by reagents in the reaction.
(8) (a) Nicolaou, K.; Aversa, R. Isr. J. Chem. 2011, 51, 359−177.
(b) Nicolaou, K. C.; Heretsch, P.; Nakamura, T.; Rudo, A.; Murata,
M.; Konoki, K. J. Am. Chem. Soc. 2014, 136, 16444−16451.
(9) Nicolaou, K. C.; Gelin, C. F.; Seo, J. H.; Huang, Z.; Umezawa, T.
J. Am. Chem. Soc. 2010, 132, 9900−9907.
Experimental procedures and spectral data for polyenes
10, 21−28, and 35−40 and compounds 42−51, 7, 6,
and 1 (PDF)
AUTHOR INFORMATION
(10) Li, J.; Ballmer, S.; Gillis, E.; Fujii, S.; Schmidt, M.; Palazzolo, A.;
Lehmann, J.; Morehouse, G.; Burke, M. Science 2015, 347, 1221−
1226.
■
Corresponding Author
ORCID
Timothy F. Jamison: 0000-0002-8601-7799
Present Address
‡A.E.S.: Department of Chemistry, Smith College, 100 Green
St., Northampton, MA 01063.
Author Contributions
†C.P.M. and A.E.S. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank the National Institute of General Medical
Sciences for financial support (GM72566 and a fellowship to
A.E.S., GM117710). The authors also thank Liam Kelly
[Massachusetts Institute of Technology (MIT)] and Dr. Bruce
Adams (MIT) for their assistance in obtaining HRMS data and
NMR data, respectively. Lastly, the authors are very grateful to
Dr. Rachel L. Beingessner (MIT) for her help with the
preparation of the manuscript.
REFERENCES
■
(1) (a) Yang, F.; Newsome, J.; Curran, D. J. Am. Chem. Soc. 2006,
128, 14200−14205. (b) Glaus, F.; Dedic, D.; Tare, P.; Nagaraja, V.;
́
Rodrigues, L.; Aínsa, J.; Kunze, J.; Schneider, G.; Hartkoorn, R.; Cole,
S.; Altmann, K. J. Org. Chem. 2018, 83, 7150−7172. (c) Singh, P.; Liu,
W.; Gougoutas, J.; Malley, M.; Porubcan, M.; Trejo, W.; Wells, J.;
Sykes, R. J. Antibiot. 1988, 41, 446−453. (d) Smith, T.; Kuo, W.;
Bock, V.; Roizen, J.; Balskus, E.; Theberge, A. Org. Lett. 2007, 9,
1153−1155. (e) Surup, F.; Shojaei, H.; von Zezschwitz, P.; Kunze, B.;
Grond, S. Bioorg. Med. Chem. 2008, 16, 1738−1746. (f) Zeng, Z.;
Chen, C.; Zhang, Y. Org. Chem. Front. 2018, 5, 838−840. (g) Kaysser,
D
DOI: 10.1021/acs.orglett.9b01019
Org. Lett. XXXX, XXX, XXX−XXX