C O M M U N I C A T I O N S
of intensity from the second excited state to the lowest excited state
occurs. This promotes a finite transition dipole moment between
the ground state and the lowest excited state of the clusters, which
is highly beneficial for the light-emission properties. Additionally,
the overlapped central phenyl rings along one-dimensional molec-
ular columns (b axis) can act as a channel for electron transport,
producing high carrier mobility. Actually, the single crystal of trans-
DPDSB exhibits very strong pure blue emission, when excited under
an ultraviolet lamp (365 nm) (shown in Figure 2a). OLED studies
have demonstrated good electron-transporting property of trans-
DPDSB films (see Supporting Information).
The distance between the central rings of adjacent molecules is
4.1 Å (b/2), which means there is no face-to-face π-π interaction.
As shown in Figure 2d, there are two different types of aromatic
CH/π hydrogen bonds between the adjacent two molecules in each
column, where two carbon atoms of conformation 2 act as proton
donors and the two phenyl substituents of conformation 1 act as
acceptors. The interaction distance and the angle of C-H-π center
for interaction I are 3.08 Å and 154°, and for interaction II are
2.67 Å and 157°, respectively. Considering that the enthalpy of
aromatic CH/π hydrogen bonds 6.5-10.3 kJ/mol for one unit19-22
but 10.3 kJ/mol seems to be the best value,22 we believe that such
CH/π interactions are the key driving force for the cross-stacking
mode. At the same time the attractive force of such CH/π
intermolecular interactions induces the different molecular confor-
mations in the crystal. The distyrylbenzene segment of conformation
1 is planar, and that of conformation 2 is torsional (Figure 1). In
detail, the torsional angle θ1 in conformation 1 is 0.5°, while in
conformation 2 the aromatic CH/π hydrogen bond I raises the
torsional angle to 24.1°. A similar influence by the aromatic CH/π
hydrogen bond II on the torsional angle of p-terphenyl segment
can be observed.
trans-DPDSB shows excellent thermal stability (melting point
of 251-254 °C determined by DSC), good electron-transporting
property, and strong pure blue emission in solids, rendering it as
good OLED material. The achieved maximum luminescence and
luminous efficiency of trans-DPDSB-based OLEDs with a simple
device structure are 2100 cd m-2 and 1.53 cd A-1, respectively,
which are much higher than that of the device using p-bis(p-
styrylstyryl)benzene as the emitting layer.23 The big difference in
performance can be attributed to the different stacking modes
between trans-DPDSB (cross stacking) and p-bis(p-styrylstyryl)
benzene (H-aggregate). Interestingly, trans-DPDSB tends to form
transparent and needlelike crystals, and from Figure 2a, the tip of
needlelike single crystal shows stronger fluorescence than the body
surface of the crystal, indicating a natural self-wave-guided structure
of this crystal.24,25 Therefore, obtained needlelike trans-DPDSB
crystals with strong fluorescence emission and self-wave-guided
structure are expected as ideal gain media for optically pumped
solid-state lasers.26,27 The ASE with threshold power of about 0.68
mJ/pulse and the initial broad blue emission collapsing into the
intense and narrow blue band from needlelike trans-DPDSB single
crystals with the increase of pumping intensity have been observed
in primary experiments for optically pumped lasers.
To summarize, we are the first to obtain the cross stacking of
trans-DPDSB, where the aromatic CH/π hydrogen bonds act as
the driving force. The crystal of trans-DPDSB has excellent thermal
stability, good electron-transporting property, and strong pure blue
emission, which make this material, a promising candidate for
OLED and laser. The primary experiments on OLED and laser
imply the potential applications of this material, and further
investigation is presently underway.
Acknowledgment. We are grateful for financial support from
National Science Foundation of China (grant numbers 20474024,
20125421, 90101026, 50473001), Ministry of Science and Technol-
ogy of China (grant number 2002CB6134003) and PCSIRT.
Supporting Information Available: Complete ref 27; synthesis
and characterization, crystal structure determination, photoluminescence
properties, OLED fabrication, ASE experiment of trans-DPDSB; and
X-ray crystallographic file (CIF). This material is available free of
References
(1) Bourroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.;
MacKay, K.; Friend, R. H.; Burn, P. L.; Homes, A. B. Nature 1990, 347,
539-541.
(2) Hwang, D. H.; Kim, S. T.; Shim, H. K.; Holmes, A. B.; Moratti, S. C.;
Friend, R. H. Chem. Commun. 1996, 2241-2242.
(3) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998,
37, 402-428.
(4) Mitschke, U.; Bauerle, P. J. Mater. Chem. 2000, 10, 1471-1507.
(5) Kranzelbinder, G.; Toussaere, E.; Zyss, J.; Pogantsch, A.; List, E. W. J.;
Tillmann, H.; Ho¨rhold, H. H. Appl. Phys. Lett. 2002, 80, 716-718.
(6) McGehee, M. D.; Heeger, A. J. AdV. Mater. 2000, 12, 1655-1668.
(7) Hide, F.; D´ıaz-Garc´ıa, M. A.; Schwartz, B. J.; Heeger, A. J. Acc. Chem.
Res. 1997, 30, 430-436.
(8) Kasha, M.; Rawls, H. R.; Bayoumi, M. A. Pure Appl. Chem. 1965, 11,
371-392.
(9) Fo¨rster, Th. Discuss. Faraday Soc. 1959, 27, 7-17.
(10) Jenekhe, S. A.; Osaheni, J. A. Science 1994, 265, 765-768.
(11) Moffitt, M.; Farinha, J. P. S.; Winnik, M. A.; Rohr, U.; Mu¨llen, K.
Macromolecules 1999, 32, 4895-4904.
(12) Cornil, J.; dos Santos, D. A.; Crispin, X.; Silbey, R.; Bre´das, J. L. J. Am.
Chem. Soc. 1998, 120, 1289-1299.
(13) Cornil, J.; Beljonne, D.; Calbert, J. P.; Bre´das, J. L. AdV. Mater. 2001,
13, 1053-1067.
(14) Siddiqui, S.; Spano, F. C. Chem. Phys. Lett. 1999, 308, 99-105.
(15) de Halleux, V.; Calbert, J. P.; Brocorens, P.; Cornil, J.; Declercq, J. P.;
Bre´das, J. L.; Geerts, Y. AdV. Funct. Mater. 2004, 14, 649-659.
(16) Hoag, B.; Gin, D. L.; Theissl, U.; Zojer, E.; Leising, G. Mater. Res. Soc.
Symp. Proc. 1999, 560, 277-282.
(17) Xie, Z. Q.; Yang, B.; Cheng, G.; Liu, L. L.; He, F.; Shen, F. Z.; Ma, Y.
G.; Liu, S. Y. Chem. Mater. 2005, 17, 1287-1289.
(18) Xie, Z. Q.; Liu, L. L.; Yang, B.; Yang, G. D.; Ye, L.; Li, M.; Ma, Y. G.
Cryst. Growth Des. 2005, 5, 1959-1964.
(19) Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Am.
Chem. Soc. 2002, 124, 104-112.
(20) Jennings, W. B.; Farrell, B. M.; Malone, J. F. Acc. Chem. Res. 2001, 34,
885-894.
(21) Nishio, M. CrystEngComm 2004, 6, 130-158.
(22) Lee, E. C.; Hong, B. H.; Lee, J. Y.; Kim, J. C.; Kim, D.; Kim, Y.;
Tarakeshwar, P.; Kim, K. S.; J. Am. Chem. Soc. 2005, 127, 4530-4537.
(23) van Hutten, P. F.; Wildeman, J.; Meetsma, A.; Hadziioannou, G.; J. Am.
Chem. Soc. 1999, 121, 5910-5918.
(24) Yanagi, H.; Morikawa, T. Appl. Phys. Lett. 1999, 75, 187-189.
(25) Yanagi, H.; Ohara, T.; Morikawa, T. AdV. Mater. 2001, 13, 1452-1455.
(26) Nagawa, M.; Hibino, R.; Hotta, S.; Yanagi, H.; Ichikawa, M.; Koyama,
T.; Taniguchi, Y. Appl. Phys. Lett. 2002, 80, 544-546.
(27) Schneider, D. et al. AdV. Mater. 2005, 17, 31-34.
JA054661D
9
J. AM. CHEM. SOC. VOL. 127, NO. 41, 2005 14153