S. Abbruzzetti et al. / Chemical Physics Letters 344 ,2001) 387±394
393
be used to photoinduce the release of OHÀ ions on
submicrosecond time scale. The reaction is re-
versible on long time scales with no apparent fa-
tigue for the compound. This peculiarity allows
the use of the compound in experiments where
several laser shots must be used to reduce the noise
level. The relaxation kinetics of proton transfer
reactions after the pH-jump can be followed in a
time window extending from about 500 ns to
hundreds of milliseconds.
increase in absorbance is characterized by a single
exponential relaxation and the measured lifetime is
s 8:6 Æ 0:2 Â 10À6 s, resulting in an apparent
rate constant k 1:16 Æ 0:03 Â 105 sÀ1. Equilib-
rium +7), with rate constants kc 1:4 Â 1011 MÀ1
s
À1, and k kc  10ꢁÀ15:76 plays a minor role in
Àc
the observed relaxation. It is known that the rate
constants for the equilibrium +8) are kd 2:7 Â 103
sÀ1 and k 4:3 Â 1010 MÀ1 sÀ1 [30]; relaxation
Àd
of equilibrium +9) occurs with rates ke 8:9 Â 109
MÀ1 sÀ1 and k ke  10ꢁpKaÀ15:76 [14,30]. The
Àe
measured kinetics is not compatible with the sim-
ple relaxation of equilibrium +8), since the resulting
deprotonation rate would be much smaller than
the measured one. At the present [OHÀ]
+ꢀ13 lM), the dominant reaction is due to equi-
librium +9). A simple estimate of the bimolecular
rate constant using the kinetic schemeÀo1 utlined
Acknowledgements
The authors acknowledge INFM +PRA CADY)
and CNR +Progetto Strategico Biosensori) for the
®nancial support.
above gives a value of ke 8:9 Â 109 M
s
À1, in
perfect accordance with the previously reported
data [30].
References
On time scales longer than 100 ls the re-
combination of the carbocation with hydroxide
leads to the protonation of bromoxylenol blue and
to the observed decrease in absorbance.
[1] G. Marriott +Ed.), Caged compounds. Methods in
Enzymology, vol. 291, 1998, Academic Press, New York.
[2] J.E.T. Corrie, Y. Katayama, G.P. Reid, M. Anson, D.R.
Trentham, Philos. Trans. R. Soc. Lond. A 340 +1992) 233.
[3] J.A. McCray, D.R. Trentham, Ann. Rev. Biophys.
Biophys. Chem. 18 +1989) 239.
The main kinetic feature in trace +A) of Fig. 4 is
the pH dependent recombination phase +transients
with lifetimes s2 and s3) occurring between 100 ls
and a few milliseconds. This phase is much less
evident, if at all, in trace +B). The decrease in ab-
sorbance at 633 nm for bromoxylenol blue +trace
+B) in Fig. 4) is the result of the relaxation of the
coupled chemical equilibria described in Eqs.
+4),+7)±+9). The coupling between reactions makes
the carbocation-OHÀ recombination rate much
smaller than in the absence of other competitive
processes [4,30,33]. In particular, at alkaline pH,
the rate of formation of HIn is mostly determined
[4] M. Gutman, E. Nachliel, Ann. Rev. Phys. Chem. 48 +1997)
329.
[5] S. Abbruzzetti, E. Crema, L. Masino, A. Vecli, C.
Viappiani, J.R. Small, L.J. Libertini, E.W. Small, Biophys.
J. 78 +1) +2000) 405.
[6] S. Abbruzzetti, C. Viappiani, J.R. Small, L.J. Libertini,
E.W. Small, Biophys. J. 79 +2000) 2714.
[7] W.A. Eaton, V. Munoz, S.J. Hagen, G.S. Jas, L.J. Lapidus,
E.R. Henry, J. Hofrichter, Ann. Rev. Biophys. Biomol.
Struct. 29 +2000) 327.
[8] J. Ervin, J. Sabelko, M. Gruebele, J. Photochem. Photo-
biol. B: Biol. 54 +2000) 1.
[9] H. Roder, M.C.R. Shastry, Curr. Opinion Struct. Biol. 9
+1999) 620.
by the low concentration of H , reacting with InÀ.
[10] M. Gruebele, Ann. Rev. Phys. Chem. 50 +1999) 485.
[11] K.C. Hansen, R.S. Rock, R.W. Larsen, S.I. Chan, J. Am.
Chem. Soc. 112 +2000) 11567.
Under the present experimental conditions this
implies apparent lifetimes in the tens of milli-
seconds [30].
[12] T. Okuno, Biochemistry 39 +2000) 7538.
[13] C. Viappiani, S. Abbruzzetti, J.R. Small, L.J. Libertini,
E.W. Small, Biophys. Chem. 73 +1998) 13.
[14] M. Gutman, E. Nachliel, Biochim. Biophys. Acta 1015
+1990) 391.
4. Conclusions
[15] P. Wan, D. Shukla, Chem. Rev. 93 +1993) 571.
[16] L.G. Arnaut, S.J. Formosinho, J. Photochem. Photobiol.
A: Chem. 75 +1993) 1.
The
compound
4-+dimethylamino)-40-+tri-
methylammonium) triphenylmethanol iodide can
[17] M.V. George, J.C. Scaiano, J. Phys. Chem. 84 +1980) 492.