606
D.O. Berbasov et al. / Journal of Fluorine Chemistry 125 (2004) 603–607
benzylamine (3.714 g, 34.66 mmol) and acetic acid
(2.080 g, 34.66 mmol) in chloroform (20 ml). The resultant
mixture was refluxed until the reaction was completed (20 h,
monitored by 19F NMR).
4.2.7. N-40-Trifluoromethybenzylidene-1-phenyl-2,2,2-
trifluoroethylamine (9d)
1H NMR: d 8.43 (s, 1H), 7.95 (d, J ¼ 7:8 Hz, 2H), 7.69 (d,
J ¼ 7:5 Hz, 2H), 7.54 (d, J ¼ 5:1 Hz, 2H), 7.40 (m, 3H),
4.84 (q, J ¼ 6 Hz, 1H). 19F NMR: d ꢀ63.43 (s), ꢀ74.36 (d,
J ¼ 7:9 Hz). 13C NMR: d 164.38, 138.29, 134.51, 129.41,
129.12, 129.00, 128.83, 128.74, 128.69, 128.62 (q,
J ¼ 272:0 Hz), 125.65, (q, J ¼ 3:7 Hz), 75.05 (q,
J ¼ 28:7 Hz).
Yields of imines 8a–d are listed in Table 1 (entries 13–16).
4.2.2. N-(10-Phenyl-20,20,20-trifluoroethylidene)-4-
methoxybenzylamine (8b)
1H NMR: d 7.47 (m, 3H), 7.28 (m, 2H), 7.16 (d,
J ¼ 8:1 Hz, 2H), 6.86 (d, J ¼ 8:1 Hz, 2H), 4.54 (s, 2H),
3.77 (s, 3H). 19F NMR: d ꢀ71.36 (s). 13C NMR: d 158.76,
158.55 (q, J ¼ 32:3 Hz), 131.94, 130.17, 130.03, 128.84,
128.80, 127.63, 119.71 (q, J ¼ 278:7 Hz), 113.95, 56.31,
55.17.
Acknowledgements
This work was supported by the start-up fund provided by
the Department of Chemistry and Biochemistry, University
of Oklahoma.
4.2.3. N-(10-Phenyl-20,20,20-trifluoroethylidene)-3,4-
dimethoxybenzylamine (8c)
1H NMR: d 7.51 (dd, J ¼ 2:1, 4.8 Hz, 2H), 7.28 (m, 3H),
6.83 (d, J ¼ 3 Hz, 1H), 6.80 (s, 1H), 6.74 (dd, J ¼ 2:1,
7.8 Hz, 1H), 4.55 (s, 2H), 3.87 (s, 3H), 3.86 (s, 3H). 19F
NMR: d ꢀ71.40 (s). 13C NMR: d 158.71 (q, J ¼ 33:9 Hz),
149.00, 148.17, 130.50, 130.21, 129.99, 128.86, 127.65,
119.68 (q, J ¼ 278:7 Hz), 119.67, 111.12, 110.94, 56.55,
55.87, 55.79.
References
[1] (a) For recent, excellently edited and comprehensive monographs on
synthesis and application of fluoro-organic compounds in general and
fluorine-containing amino-compounds in particular, see: R. Filler, Y.
Kobayashi, L.M. Yagupolskii (Eds.), Organofluorine in Medicinal
Chemistry and Biochemical Applications, Elsevier, Amsterdam, The
Netherlands, 1993;
4.2.4. N-(10-Phenyl-20,20,20-trifluoroethylidene)-4-
(trifluoromethyl)benzylamine (8d)
(b) I. Ojima, J.R. McCarthy, J.T. Welch (Eds.), Biomedical Frontiers
of Fluorine Chemistry, American Chemical Society, Washington,
DC, 1996;
1H NMR: d 7.59 (d, J ¼ 8:1 Hz, 2H), 7.52 (m, 3H), 7.39
(d, J ¼ 8:1 Hz, 2H), 7.27 (m, 2H), 4.65 (s, 2H). 19F NMR: d
ꢀ63.00 (s), ꢀ71.47 (s). 13C NMR: d 164.37, 159.80 (q,
J ¼ 34:3 Hz), 142.03, 130.46, 129.99, 129.04, 127.78,
127.49, 125.52 (q, J ¼ 3:7 Hz), 125.51 (q, J ¼ 272:1 Hz),
119.58 (q, J ¼ 278:6 Hz), 56.20.
(c) R.D. Chambers (Ed.), Topics in Current Chemistry—Organo-
fluorine Chemistry: Techniques and Synthons, vol. 193, Springer,
Berlin, Germany, 1997;
(d) R.E. Banks, B.E. Smart, J.C. Tatlow, Organofluorine Chemistry:
Principles and Commercial Applications, Plenum Press, New York,
1994;
(e) M. Hudlicky, A.E. Pavlath, Chemistry of Organic Fluorine
Compounds II. A Critical Review, ACS Monograph 187, American
Chemical Society, Washington, DC, 1995.
Schiff bases 9a–d, isolated as by-products, can be easily
prepared from 8a–d under the general conditions described
previously for synthesis 9a [16b]. Spectral characteristics of
9b–d are listed below.
[2] (a) For comprehensive reviews on fluorine-containing amino acids
and asymmetric synthesis of fluorinated compounds, see: V.P.
Kukhar, V.A. Soloshonok, (Eds.) Fluorine-Containing Amino Acids,
Wiley, Chichester, UK, 1994;
4.2.5. N-40-Methoxybenzylidene-1-phenyl-2,2,2-
trifluoroethylamine (9b)
(b) V.A. Soloshonok (Ed.), Enantiocontrolled Synthesis of Fluoro-
Organic Compounds: Stereochemical Challenges and Biomedicinal
Targets, Wiley, Chichester, UK, 1999.
1H NMR: d 8.25 (s, 1H), 7.74 (d, J ¼ 9:0 Hz, 2H), 7.55 (d,
J ¼ 6:3 Hz, 2H), 7.33 (m, 3H), 6.88 (d, J ¼ 9:0 Hz, 2H),
4.73 (q, J ¼ 7:5 Hz, 1H), 3.75 (s, 3H). 19F NMR: d ꢀ74.28
(d, J ¼ 7:9 Hz). 13C NMR: d 164.99, 162.37, 135.24,
130.44, 128.78, 128.74, 128.50, 128.27, 124.81 (q,
J ¼ 280:7 Hz),113.98, 74.96 (q, J ¼ 28:2 Hz), 55.23.
[3] (a) T. Hayashi, V.A. Soloshonok (Eds.), Enantiocontrolled Synthesis
of Fluoro-Organic Compounds, Tetrahedron: Asymmetry Special
Issue, Tetrahedron: Asymmetry 5 (6) (1994). (b) G. Resnati, V.A.
Soloshonok, (Eds.), Fluoroorganic Chemistry: Synthetic Challenges
and Biomedical Rewards, Tetrahedron Symposium-in-Print No. 58.
Tetrahedron 52 (1996) 1–330.
[4] (a) For recent leading publications on synthesis and application of a-
trifluoromethyl containing amines, see:J. Legros, F. Meyer, M.
Coliboeuf, B. Crousse, D. Bonnet-Delpon, J.-P. Begue, J. Org. Chem.
68 (2003) 6444;
4.2.6. N-30,40-Dimethoxybenzylidene-1-phenyl-2,2,2-
trifluoroethylamine (9c)
1H NMR: d 8.25 (s, 1H), 7.55 (m, 3H), 7.37 (m, 3H), 7.19
(dd, J ¼ 1:8, 8.4 Hz, 1H), 6.82 (d, J ¼ 11:1 Hz, 1H), 4.76
(q, J ¼ 8:1 Hz, 1H), 3.91 (s, 3H), 3.86 (s, 3H). 19F NMR: d
ꢀ74.17 (d, J ¼ 5:9 Hz). 13C NMR: d 165.14, 152.04,
149.21, 135.09, 131.52, 128.65, 128.51, 128.43, 124.21
(q, J ¼ 281:0 Hz), 123.96, 110.20, 109.02, 74.81 (q,
J ¼ 28:2 Hz), 55.74.
(b) F. Gagosz, S.Z. Zard, Org. Lett. 5 (2003) 2655;
(c) B. Torok, S.G.K. Prakash, Adv. Synth. Catal. 245 (2003) 165;
(d) Y. Gong, K. Kato, H. Kimoto, Bull. Chem. Soc. Jpn. 75 (2002)
2637;
(e) K. Funabiki, M. Nagamori, M. Matsui, D. Enders, Synthesis 17
(2002) 2585;
(f) A. Volonterio, P. Bravo, W. Panzeri, C. Pesenti, M. Zanda, Eur. J.
Org. Chem. 19 (2002) 3336;