C O M M U N I C A T I O N S
Scheme 2. Formal Enantioselective Synthesis of Taurospongin A
in 12 steps from ketone 2k and with 6% overall yield. This work
illustrates for the first time the use of catalytic and asymmetric
vinylogous Mukaiyama reactions on aliphatic ketones to create
enantiomerically enriched lactones with tertiary alcohols. Further
developments and optimization of this methodology will be
published in due course.
Acknowledgment. We are grateful to the CNRS for financial
support, MENRT-France (X.M.), and CONACYT-Mexico (B.B.T.)
for grants.
Supporting Information Available: Experimental details and
characterization for all new compounds (PDF). This material is available
References
(1) (a) Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105. (b)
Christoffers, J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688. (c) Corey,
E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.
(2) For an excellent highlight on this topic, see: Ramon, D. J.; Yus, M. Angew.
Chem., Int. Ed. 2004, 43, 284.
(3) Betancort, J. M.; Garcia, C.; Walsh, P. J. Synlett 2004, 749.
(4) (a) Ramon, D. J.; Yus, M. Tetrahedron 1998, 54, 5651. (b) Ramon, D. J.;
Yus, M. Tetrahedron Lett. 1998, 39, 1239. (c) Yus, M.; Ramon, D. J.;
Prieto, O. Tetrahedron: Asymmetry 2002, 13, 2291. (d) Yus, M.; Ramon,
D. J.; Prieto, O. Tetrahedron: Asymmetry 2003, 14, 1103. (e) Garcia, C.;
LaRochelle, L. K.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970. (f)
Jeon, S.-J.; Walsh, P. J. J. Am. Chem. Soc. 2003, 125, 9544.
(5) (a) Dosa, P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445. (b) Garcia,
C.; Walsh, P. J. Org. Lett. 2003, 5, 3641. (c) Prieto, O.; Ramon, D. J.;
Yus, M. Tetrahedron: Asymmetry 2003, 14, 1955.
(6) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538.
(7) (a) Cozzi, P. G. Angew. Chem., Int. Ed. 2003, 42, 2895. (b) Lu, G.; Li,
X.; Jia, X.; Chan, W. L.; Chan, A. S. C. Angew. Chem., Int. Ed. 2003,
42, 5057.
(8) (a) Casolari, S.; D’Addario, D.; Tagliavini, E. Org. Lett. 1999, 1, 1061.
(b) Waltz, K. M.; Gavenonis, J.; Walsh, P. J. Angew. Chem., Int. Ed.
2002, 41, 3697. (c) Kim, J. G.; Waltz, K. M.; Garcia, I. F.; Kwiatkowski,
D.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 12580. (d) Kii, S.; Maruoka,
K. Chirality 2003, 15, 68. (e) Cunningham, A.; Woodward, S. Synlett
2002, 43. (f) Cunningham, A.; Mokal-Parekh, V.; Wilson, C.; Woodward,
S. Org. Biomol. Chem 2004, 2, 741.
analysis, we anticipated that the tertiary alcohol could be created
using a catalytic and asymmetric vinylogous Mukaiyama reaction
on ketone 2k (Scheme 2 and Table 1, entry 11).
Indeed, in the presence of (R)-tolBinap, the corresponding lactone
3k was obtained in 72% yield and 88% ee. After hydrogenation of
the double bond, the lactone 5 was opened-up in the presence of
the Weinreb amine, and the tertiary alcohol was protected as a TES
silyl ether in 64% yield (two steps). After reduction to the
corresponding aldehyde using Dibal-H, an asymmetric Keck
allylation23 afforded the corresponding homoallylic alcohol 7 in
81% yield (and 91% ee, determined using the Mosher ester method).
Compound 7 was then transformed into the corresponding epoxide
9 using a diastereoselective three-step Smith’s methodology.24 After
Boc protection (81% yield) followed by treatment with IBr and
K2CO3/MeOH, epoxide 9 was thus obtained in 51% yield in a 9:1
diastereoselectivity. After acetylation, diastereomerically pure
epoxide 10 was obtained (after flash chromatography) and selec-
tively hydrogenated25 in the presence of palladium ethylenediamine
(Pd/C(en)) to the expected secondary alcohol in 50% yield (92%
based on recovered starting material). As previously observed by
Jacobsen,19 this compound is quite unstable, and to prevent acetyl
migration, the secondary alcohol was rapidly protected as a TBS
silyl ether using TBSOTf (65% yield). The conversion of 11 to
taurospongin A (Chart 2) has been demonstrated by Jacobsen. In
conclusion, we have completed a formal synthesis of taurospongin
(9) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004,
126, 8910.
(10) Denmark, S. E.; Fu, J. Chem. ReV. 2003, 103, 2763.
(11) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002, 124, 4233.
(12) Evans, D. A.; Johnson, J. Acc. Chem. Res. 2000, 33, 325.
(13) Oisaki, K.; Suto, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2003,
125, 5644.
(14) (a) Bluet, G.; Campagne, J.-M. Tetrahedron Lett. 1999, 40, 5507. (b) Bluet,
G.; Campagne, J.-M. J. Org. Chem. 2001, 66, 4293. (c) Bluet, G.; Baza´n-
Tejeda, B.; Campagne, J.-M. Org. Lett. 2001, 3, 3807.
(15) (a) Pagenkopf, B. L.; Kruger, J.; Stojanovic, A.; Carreira, E. M. Angew.
Chem., Int. Ed. 1998, 37, 3124. (b) Kruger, J.; Carreira, E. M. J. Am.
Chem. Soc. 1998, 120, 837.
(16) Absolute configurations have been attributed by correlation after hydro-
genation of lactone 3a to the known reduced (R)-lactone. Date, M.; Tamai,
Y.; Hattori, T.; Takayama, H.; Kamikubo, Y.; Miyano, S. J. Chem. Soc.,
Perkin Trans. 1 2001, 645 (see Supporting Information).
(17) Unpublished work from this laboratory.
(18) Ishiyama, H.; Ishibashi, M.; Ogawa, A.; Yoshida, S.; Kobayashi, J.-i. J.
Org. Chem. 1997, 62, 3831.
(19) Lebel, H.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 9624.
(20) (a) Hollowood, C. J.; Ley, S. V.; Yamanoi, S. Chem. Commun. 2002,
1624. (b) Hollowood, C. J.; Yamanoi, S.; Ley, S. V. Org. Biomol. Chem.
2003, 1, 1664.
(21) Ghosh, A. K.; Lei, H. Tetrahedron: Asymmetry 2003, 14, 629.
(22) Zheng, G. R.; Lu, W.; Cai, J. C. Chin. Chem. Lett. 2001, 12, 961.
(23) Keck, G. E.; Krishnamurthy, D. Org. Synth. 1998, 75, 12.
(24) Duan, J. J. W.; Smith, A. B., III. J. Org. Chem. 1993, 58, 3703.
(25) Sajiki, H.; Hattori, K.; Hirota, K. Chem. Commun. 1999, 1041.
JA051573K
9
J. AM. CHEM. SOC. VOL. 127, NO. 20, 2005 7289