6
726 Biochemistry, Vol. 49, No. 31, 2010
Metzger and Raetz
1
5. Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto,
S., Watanabe, A., Idesawa, K., Ishikawa, A., Kawashima, K., Kimura,
T., Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno,
A., Mochizuki, Y., Nakayama, S., Nakazaki, N., Shimpo, S., Sugimoto,
M., Takeuchi, C., Yamada, M., and Tabata, S. (2000) Complete genome
structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti.
DNA Res. 7, 331–338.
6. Nierman, W. C., Feldblyum, T. V., Laub, M. T., Paulsen, I. T.,
Nelson, K. E., Eisen, J., Heidelberg, J. F., Alley, M. R., Ohta, N.,
Maddock, J. R., Potocka, I., Nelson, W. C., Newton, A., Stephens, C.,
Phadke, N. D., Ely, B., DeBoy, R. T., Dodson, R. J., Durkin, A. S.,
Gwinn, M. L., Haft, D. H., Kolonay, J. F., Smit, J., Craven, M. B.,
Khouri, H., Shetty, J., Berry, K., Utterback, T., Tran, K., Wolf, A.,
Vamathevan, J., Ermolaeva, M., White, O., Salzberg, S. L., Venter,
J. C., Shapiro, L., and Fraser, C. M. (2001) Complete genome
sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. U.S.A.
Wang, S. Y., Ma, W., Yao, Z. J., Shen, Y., Qiang, B. Q., Xia, Q. C.,
Guo, X. K., Danchin, A., Saint Girons, I., Somerville, R. L., Wen,
Y. M., Shi, M. H., Chen, Z., Xu, J. G., and Zhao, G. P. (2003) Unique
physiological and pathogenic features of Leptospira interrogans re-
vealed by whole-genome sequencing. Nature 422, 888–893.
32. Deckert, G., Warren, P. V., Gaasterland, T., Young, W. G., Lenox,
A. L., Graham, D. E., Overbeek, R., Snead, M. A., Keller, M., Aujay,
M., Huber, R., Feldman, R. A., Short, G. M., Olsen, G. J., and
Swanson, R. V. (1998) The complete genome of the hyperthermo-
philic bacterium Aquifex aeolicus. Nature 392, 353–358.
33. Snyder, D. S., Brahamsha, B., Azadi, P., and Palenik, B. (2009)
Structure of compositionally simple lipopolysaccharide from marine
Synechococcus. J. Bacteriol. 191, 5499–5509.
34. Qureshi, N., Kaltashov, I., Walker, K., Doroshenko, V., Cotter, R. J.,
Takayama, K., Sievert, T. R., Rice, P. A., Lin, J. S., and Golenbock,
D. T. (1997) Structure of the monophosphoryl lipid A moiety
obtained from the lipopolysaccharide of Chlamydia trachomatis.
J. Biol. Chem. 272, 10594–10600.
1
9
8, 4136–4141.
1
7. Wheeler, D. L., Church, D. M., Federhen, S., Lash, A. E., Madden,
T. L., Pontius, J. U., Schuler, G. D., Schriml, L. M., Sequeira,
E., Tatusova, T. A., and Wagner, L. (2003) Database resources
of the National Center for Biotechnology. Nucleic Acids Res. 31,
35. Rund, S., Lindner, B., Brade, H., and Holst, O. (1999) Structural
analysis of the lipopolysaccharide from Chlamydia trachomatis ser-
otype L2. J. Biol. Chem. 274, 16819–16824.
2
8–33.
36. Bulawa, C. E., Hermes, J. D., and Raetz, C. R. H. (1983) Chloroform-
soluble nucleotides in Escherichia coli. Role of CDP-diglyceride in the
enzymatic cytidylylation of phosphomonoester acceptors. J. Biol.
Chem. 258, 14974–14980.
1
1
2
8. Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995)
Tight regulation, modulation, and high-level expression by vectors
containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–
4
130.
37. Larson, T. J., and Dowhan, W. (1976) Ribosomal-associated phos-
phatidylserine synthetase from Escherichia coli: Purification by sub-
9. Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., and
Court, D. L. (2000) An efficient recombination system for chromo-
some engineering in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97,
0
strate-specific elution from phosphocellulose using cytidine 5 -di-
phospho-1,2-diacyl-sn-glycerol. Biochemistry 15, 5212–5218.
38. Gerlt, J. A., and Babbitt, P. C. (2001) Divergent evolution of enzy-
matic function: Mechanistically diverse superfamilies and function-
ally distinct suprafamilies. Annu. Rev. Biochem. 70, 209–246.
39. Cleland, W. W., and Hengge, A. C. (2006) Enzymatic mechanisms of
phosphate and sulfate transfer. Chem. Rev. 106, 3252–3278.
40. Shi, Y. (2009) Serine/threonine phosphatases: Mechanism through
structure. Cell 139, 468–484.
41. Rudolph, J. (2007) Cdc25 phosphatases: Structure, specificity, and
mechanism. Biochemistry 46, 3595–3604.
42. Dominski, Z. (2007) Nucleases of the metallo-β-lactamase family and
their role in DNA and RNA metabolism. Crit. Rev. Biochem. Mol.
Biol. 42, 67–93.
5
978–5983.
0. Ma, B., Reynolds, C. M., and Raetz, C. R. (2008) Periplasmic orien-
tation of nascent lipid A in the inner membrane of an Escherichia coli
LptA mutant. Proc. Natl. Acad. Sci. U.S.A. 105, 13823–13828.
1. Miller, J. R. (1972) Experiments in Molecular Genetics, Cold Spring
Harbor Laboratory Press, Plainview, NY.
2
2
2
2. Dulbecco, R., and Vogt, M. (1954) Plaque formation and isolation of
pure lines with poliomyelitis viruses. J. Exp. Med. 99, 167–182.
3. Metzger, L. E. I., and Raetz, C. R. H. (2009) Purification and
characterization of the lipid A disaccharide synthase (LpxB) from
Escherichia coli, a peripheral membrane protein. Biochemistry 48,
1
1559–11571.
2
2
4. McClerren, A. L., Zhou, P., Guan, Z., Raetz, C. R. H., and Rudolph,
J. (2005) Kinetic analysis of the zinc-dependent deacetylase in the lipid
A biosynthetic pathway. Biochemistry 44, 1106–1113.
5. Bartling, C. M., and Raetz, C. R. H. (2008) Steady-state kinetics and
mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis.
Biochemistry 47, 5290–5302.
43. Li, W. M., Barnes, T., and Lee, C. H. (2010) Endoribonucleases:
Enzymes gaining spotlight in mRNA metabolism. FEBS J. 277, 627–
641.
44. Stukey, J., and Carman, G. M. (1997) Identification of a novel
phosphatase sequence motif. Protein Sci. 6, 469–472.
45. Maehama, T., Taylor, G. S., and Dixon, J. E. (2001) PTEN and
myotubularin: Novel phosphoinositide phosphatases. Annu. Rev.
Biochem. 70, 247–279.
46. Wang, X., Karbarz, M. J., McGrath, S. C., Cotter, R. J., and Raetz,
C. R. H. (2004) MsbA transporter-dependent lipid A 1-dephosphor-
ylation on the periplasmic surface of the inner membrane: Topogra-
phy of Francisella novicida LpxE expressed in Escherichia coli. J. Biol.
Chem. 279, 49470–49478.
2
6. Bligh, E. G., and Dyer, J. J. (1959) A rapid method of total lipid
extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.
7. Galibert, F., Finan, T. M., Long, S. R., Puhler, A., Abola, P., Ampe,
F., Barloy-Hubler, F., Barnett, M. J., Becker, A., Boistard, P., Bothe,
G., Boutry, M., Bowser, L., Buhrmester, J., Cadieu, E., Capela, D.,
Chain, P., Cowie, A., Davis, R. W., Dreano, S., Federspiel, N. A.,
Fisher, R. F., Gloux, S., Godrie, T., Goffeau, A., Golding, B., Gouzy,
J., Gurjal, M., Hernandez-Lucas, I., Hong, A., Huizar, L., Hyman,
R. W., Jones, T., Kahn, D., Kahn, M. L., Kalman, S., Keating, D. H.,
Kiss, E., Komp, C., Lelaure, V., Masuy, D., Palm, C., Peck, M. C.,
Pohl, T. M., Portetelle, D., Purnelle, B., Ramsperger, U., Surzycki,
R., Thebault, P., Vandenbol, M., Vorholter, F. J., Weidner, S., Wells,
D. H., Wong, K., Yeh, K. C., and Batut, J. (2001) The composite
genome of the legume symbiont Sinorhizobium meliloti. Science 293,
2
47. Wang, X., McGrath, S. C., Cotter, R. J., and Raetz, C. R. H. (2006)
Expression cloning and periplasmic orientation of the Francisella
0
novicida lipid A 4 -phosphatase LpxF. J. Biol. Chem. 281, 9321–9330.
48. Mildvan, A. S., Xia, Z., Azurmendi, H. F., Saraswat, V., Legler,
P. M., Massiah, M. A., Gabelli, S. B., Bianchet, M. A., Kang, L. W.,
and Amzel, L. M. (2005) Structures and mechanisms of Nudix
hydrolases. Arch. Biochem. Biophys. 433, 129–143.
668–672.
8. Doerrler, W. T., Reedy, M. C., and Raetz, C. R. H. (2001) An
Escherichia coli mutant defective in lipid export. J. Biol. Chem. 276,
49. Persson, R., Cedergren-Zeppezauer, E. S., and Wilson, K. S. (2001)
Homotrimeric dUTPases: Structural solutions for specific recognition
and hydrolysis of dUTP. Curr. Protein Pept. Sci. 2, 287–300.
50. Holtz, K. M., and Kantrowitz, E. R. (1999) The mechanism of the
alkaline phosphatase reaction: Insights from NMR, crystallography
and site-specific mutagenesis. FEBS Lett. 462, 7–11.
51. Miroux, B., and Walker, J. E. (1996) Over-production of proteins in
Escherichia coli: Mutant hosts that allow synthesis of some membrane
proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–
298.
2
2
3
3
1
9. Carman, G. M., Deems, R. A., and Dennis, E. A. (1995) Lipid
1461–11464.
signaling enzymes and surface dilution kinetics. J. Biol. Chem. 270,
1
8711–18714.
0. Babinski, K. J., and Raetz, C. R. H. (1998) Identification of a gene
encoding a novel Escherichia coli UDP-2,3-diacylglucosamine hydro-
lase. FASEB J. 12, A1288.
1. Ren, S. X., Fu, G., Jiang, X. G., Zeng, R., Miao, Y. G., Xu, H.,
Zhang, Y. X., Xiong, H., Lu, G., Lu, L. F., Jiang, H. Q., Jia, J., Tu,
Y. F., Jiang, J. X., Gu, W. Y., Zhang, Y. Q., Cai, Z., Sheng, H. H.,
Yin, H. F., Zhang, Y., Zhu, G. F., Wan, M., Huang, H. L., Qian, Z.,
52. Nishijima, M., Bulawa, C. E., and Raetz, C. R. H. (1981) Two
interacting mutations causing temperature-sensitive phosphatidyl-
glycerol synthesis in Escherichia coli membranes. J. Bacteriol. 145,
113–121.