averages): 16; acquisition time : 14 minutes 56 seconds; matrix:
344 x 192; slice thickness: 1 mm; FOV : 3.2 x 1.8 cm ; spatial
resolution: 93 x 94 microns; fat saturation. Images were acquired
on mice, treated with dexamethasone (developing apoptosis in
the cortical region of thymus) and on control mice, up to 2 hours
(9 time points) after receiving an intravenous injection of Gd-
DO2AGAPNBn-E3pep or Gd-DO2AGAPNBn (200 micromoles
Gd/kg). Image analysis was performed with the ImageJ software
by measurement of a signal intensity enhancement ratio in
thymus (cortex versus medulla), expressed as a percentage of
change relative to the pre-contrast situation (considered as 100
%). Statistical significance of differences between percentages of
change were tested in Microsoft Excel using Student’s t-test.
3
4
Frullano, L.; Meade, T.; J. Biol. Inorg. Chem., 2007, 12,
939-949;
a) Que, E. L.; and Chang, C. J.; Chem. Soc. Rev. 2010, 39,
51-60; b) Caravan, P.; Chem. Soc. Rev. 2006, 35, 512–523;
c) Hermann, P.; Kotek, J., Kubicek, V.; Lukes, I.; Dalton.
Trans., 2008, 3027–3047
5
6
a) Tóth, É.; Pubanz, D.; Vauthey, S.; Helm, L.; Merbach,
A. E.; Chem. Eur. J., 1996, 2, 1607-1615; b) Caravan, P.;
Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev.,
1999, 99, 2293-2352.
Chem. Soc., 1996, 39, 9333–9346.
6.10. Immunohistochemistry
Mice were sacrificed in accordance with the ethics committee of
CMMI (protocol 2012-06), 18h after intraperitoneal injection of
DEX (30 mg/kg). Thymus was collected and fixed in 4%
formalin during 24h. After PBS washing, tissue was dehydrated
and embedded in paraffin using a Tissue-Tek VIP machine
(Sakura Finetek, Japan). Thymus sections of 5-micron thickness
were cut using a microtome and were automatically processed by
7
8
Chilla, S. N. M.; Laurent, S.; Vander Elst, L.; Muller., R.
N. Tetrahedron, 2014, 70, 5450-5454.
Aime,S.; Botta, M.; Fasano, M.; Paula, M.; Marques, M.;
Geraldes, C. F. G. C.; Pubanz, D.; Merbach, A. E.; Inorg.
Chem., 1997, 36, 2059-2068.
9
a) Dunand, F. A.; Aime, S.; Merbach, A. E.; J. Am. Chem.
Soc., 2000, 122, 1506-1512; b) Woods, M.; Aime, S.;.
Botta, M.; Howard, J. A. K.; Moloney, J. M.; Navet, M.;
Parker, D.; Port, M.; Rousseaux, O.; J. Am. Chem. Soc.,
2000, 122, 9781-9792; c) Woods, M.; Kovacs, Z.; Zhang,
S.; Sherry, A. D.; Angew. Chem. Int. Ed., 2003, 42, 5889 –
5892.
a
Discovery XT machine (Ventana/Roche, Belgium) for
immunohistochemistry of activated (cleaved) caspase-3 enzyme.
Sections were incubated at 37°C for 1h with anti-cleaved
caspase-3 (Asp175) primary antibody (#9661, Cell Signaling,
Netherlands), at dilution 1:100 in Ventana/Roche buffer, and for
24 minutes with secondary antibody (1 :200; biotinylated anti-
rabbit IgG made in goat (#BA-1000, Vector laboratories,
LabConsult, Belgium)). Areas of caspase-3 activation were
revealed by a streptavidin-biotin peroxidase detection system
(Discovery DAB Map (#760-124, Ventana/Roche, Belgique))
allowing for diaminobenzidine precipitation at locations of
antibody binding (brownish coloration) on thymic tissue. After
nuclei coloration with hematoxylin, sections were dehydrated and
mounted for light microscope observation.
10
11
a) Frullano L.; and Meade, T.; J. Biol. Inorg. Chem., 2007,
12, 939-949; b) Bonnet, C. S.; and Toth, E.; C. R. Chim.,
2010, 13, 700–714.
Laumonier, C.; Segers, J.; Laurent, S.; Michel, A.; Coppée,
F.; Belayew, A.; Vander Elst, L.; Muller, R.N.; J. Biomol.
Screen., 2006, 11, 537-545.
Acknowledgements
12
13
Elmore, S.; Toxicol Pathol. 2007, 35, 495-516.
The authors thank to the ARC Programs of the French
Community of Belgium, UIAP VII program of Belspo, the
Région Wallone (Gadolymph project n° 1317980 through
the EuroNanoMed 2013 framework), Holocancer and
a) Brooks, K. J.; Bunce, K.T.; Haase, M.V.; White, A.;
Kumar Changani, K.; Bate, S.T.; Reid, D.G.; Steroids.
2005, 70, 267–272. b) Herold, M. J.; McPherson, K.G.;
Reichardt, H.M.; Cell. Mol. Life Sci. 2006, 63, 60-72.
Interreg programs. The support and sponsorship concerted
14
a) Rudovsky, J.; Cigler, P.; Kotek, J.; Hermann, P.;
Vojtsek, P., Lukes, I.; Peters, J. A.; Vander Elst, L.; Muller,
R. N.; Chem. Eur. J., 2005, 11, 2373 – 2384; b) Rudovsky,
J.; Kotek, J.; Hermann, P.; Lukes, I.; Mainero V.; and
Aime., S.; Org. Biomol. Chem., 2005, 3, 112-117;
by COST Actions TD1004 and EMIL program are
acknowledged. The support from the Grant Agency of the
Czech Republic (Project No. 16-03156S) is acknowledged.
The authors thank the Center for Microscopy and Molecular
Imaging (CMMI, supported by the Wallonia Region). The
DIAPATH (Digital Image Analysis in Pathology) research
unit of CMMI is thanked for immunohistochemical tissue
processing.
15
16
a) Wardleworth, P. S.; and Baylis, E. K.; EP 307362, 1989.
b) Dingwall, J. G.; Ehrenfreund, J.; and Hall., R.G.;
Tetrahedron, 1989, 45, 3787–3808.
a) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening., R.
L.; Chem. Rev. 1991, 91, 1721-2085; b) Burai, L.; Ren, J.;
Kovacs, Z.; Brucher, E.; Sherry., A.D.; Inorg. Chem., 1998,
37, 69-75.
Notes and references
1
Merbach, A.; Helm, L.; Toth, E.; The chemistry of contrast
agents in medical resonance imaging, Second ed., John
wiley & sons, Ltd. 2013.
17
a) Lowe, M. P.; Parker, D.; Reany, O.; Aime, S.; Botta, M.;
Castellano, G.; Gianolio, E.; Pagliarin., R.; J. Am. Chem.
Soc., 2001, 123,7601–7609; b) Eisenwiener, K-P; Powell,
P.; Macke, H. R.; Bioorg. Med. Chem. Lett, 2000, 10,
2133-2135. c) Huskens, J.; Sherry, A.D.; Torres, D.A.;
2
Webb, A.G.; J. Magn. Reson., 2013, 226, 55–66 ; b) Di
Corato, R. ; Gazeau, F. ; Le Visage, C.; Fayol, D.; Levitz,
P.; Lux, F.; Letourneur, D.; Luciani, N.; Tillement, O.;
Wilhelm, C. ACS Nano., 2013, 9, 7500–7512.