Angewandte
Chemie
[11]a) T. Ishiyama, J. Takagi, Y. Yonekawa, J. F. Hartwig, N.
In summary, we have shown that the catalyst will borylate
dtbpy unless it is already coordinated to the Ir center.
Moreover, we note that a single substituent ortho to the N
atom is sufficient to inhibit N-coordination to the Ir center,
thus “activating” the six-membered heteroarenes to boryla-
Miyaura, Adv. Synth. Catal. 2003, 345, 1103; b) T. Ishiyama, Y.
Nobuta, J. F. Hartwig, N. Miyaura, Chem. Commun. 2003, 2942.
[12]a) J.-Y. Cho, C. N. Iverson, M. R. Smith III, J. Am. Chem. Soc.
2000, 122, 12868; b) T. Tagata, M. Nishida, Adv. Synth. Catal.
2004, 346, 1655.
À
tion of C H bonds and providing a design criterion for
[13]G. A. Chotana, M. A. Rak, M. R. Smith, III, J. Am. Chem. Soc.
2005, 127, 10539.
substrates for selective borylation. Complete regioselectivity
has been achieved through either electronic or steric control,
which allows, for the first time, borylation of pyridine
derivatives ortho to the N atom or ortho to a MeO substituent
(that is, meta to the N center). The compound 2-Ph-pyridine,
important in the design of triplet-emitting Ir complexes for
OLEDs,[15] can be further derivatized at the 4- and 5-positions
of the py ring in preference to the Ph ring, thus leading to
useful 4-(or 5-)-Ar’-2-Ar-pyridine derivatives. The compound
2,3-dimethylpyrazine was borylated ortho to the N atom and
cross-coupled with the electron-rich heteroarene 2-bromo-
thiophene. Finally, whilst some of the aryl pyridines, such as
3A and 4A, have been reported previously as ligands in Ru
and luminescent Ir and Pt complexes,[17] prepared by the
addition of PhLi to dtbpy followed by hydrolysis and
oxidation, our route is more general and inherently more
functional-group tolerant and does not require highly reactive
ArLi reagents. We expect this route to be of use in
applications that range from pharmaceuticals to new optical
and electronic materials.
[14]For synthetic and crystallization details and the molecular
structures, see the Supporting Information. X-ray diffraction
experiments were performed with SMART 1 K CCD area-
detector diffractometers using MoKa radiation (l = 0.71073 ) at
T= 120(2) K; the structures were solved by direct methods
(SHELXTL; Bruker AXS, Inc., Madison, WI, USA). 3A·2C6F6:
C42H32F12N2, Mr = 792.70, orthorhombic, space group Pccn, a =
14.021(2), b = 19.509(3), c = 13.2267(19) , V= 3618.1(9) 3,
Z = 4, 1calcd = 1.455 MgmÀ3, m = 0.128 mmÀ1, R (F; F2 > 2s) =
0.0550, Rw (F2, all data) = 0.1583, S = 1.297 for 5474 unique
data (q < 30.5) and 317 refined parameters; final difference
synthesis within Æ 0.54 eÀ3. 4A·C6F6: C30H28F6N2, Mr = 530.54,
orthorhombic, space group Pnma, a = 27.2125(17), b =
6.7353(5), c = 14.3175(10) , V= 2624.2(3) 3, Z = 4, 1calcd
=
1.343 MgmÀ3, m = 0.108 mmÀ1, R (F; F2 > 2s) = 0.0508, Rw (F2,
all data) = 0.1346, S = 1.010 for 4319 unique data (q < 30.51) and
291 refined parameters; final difference synthesis within
Æ 0.34 eÀ3. 2B: C24H34B2N2O6, Mr = 468.15, monoclinic, space
group P21/n, a = 9.3567(6), b = 22.0270(13), c = 12.2764(8) ,
b = 98.213(3)8, V= 2504.2(3) 3, Z = 4, 1calcd = 1.242 MgmÀ3, m =
0.087 mmÀ1, R (F; F2 > 2s) 0.0717, Rw (F2, all data) = 0.2121, S =
1.069 for 7652 unique data (q < 30.508) and 317 refined
À3
parameters; final difference synthesis within Æ 0.64 e
.
Received: August 26, 2005
Published online: December 2, 2005
3C(4): C21H15N, Mr = 281.34, monoclinic, space group P21, a =
6.7020(8), b = 7.6743(9), c = 14.6965(17) , b = 97.980(3)8, V=
748.57(15) 3, Z = 2, 1calcd = 1.248 gcmÀ3, m = 0.072 mmÀ1, R (F;
F2 > 2s) = 0.0426, Rw (F2, all data) = 0.1261, S = 0.645 for 2165
unique data (q < 27.50) and 260 refined parameters; final
difference synthesis within Æ 0.33 eÀ3. 3C(5): C21H15N, Mr =
281.34, monoclinic, space group P21, a = 7.099(1), b = 12.943(2),
Keywords: boron · boronate esters · boronic acidheterocycles ·
.
À
C H activation · structure elucidation
c = 7.928(1) , b = 100.02(1)8, V= 717.33(18) 3, Z = 2, 1calcd
=
1.303 gcmÀ3, m = 0.075 mmÀ1, R (F; F2 > 2s) = 0.0423, Rw (F2, all
data) = 0.1188, S = 1.069 for 2163 unique data (q < 29.98) and
259 refined parameters; final difference synthesis within
Æ 0.33 eÀ3. 3D: C10H10N2S, Mr = 190.26, monoclinic, space
group P21/n, a = 7.1352(19), b = 12.292(3), c = 11.175(3) , b =
[1]a) A. Suzuki, N. Miyaura, Chem. Rev. 1995, 95, 2451; b) A.
Suzuki, J. Organomet. Chem. 1999, 576, 147; c) P. R. Parry, C.
Wang, A. S. Batsanov, M. R. Bryce, B. Tarbit, J. Org. Chem.
2002, 67, 7541; d) F. Türksoy, G. Hughes, A. S. Batsanov, M. R.
Bryce, J. Mater. Chem. 2003, 13, 1554; e) P. R. Parry, M. R.
Bryce, B. Tarbit, Synthesis 2003, 1035; f) N. Saygili, A. S.
Batsanov, M. R. Bryce, Org. Biomol. Chem. 2004, 2, 852;
g) A. E. Thompson, G. Hughes, A. S. Batsanov, M. R. Bryce,
P. R. Parry, B. Tarbit, J. Org. Chem. 2005, 70, 388.
94.168(4)8, V= 977.5(4) 3, Z = 4, 1calcd = 1.293 MgmÀ3
, m =
0.283 mmÀ1, R (F; F2 > 2s) = 0.0464, Rw (F2, all data) = 0.1293,
S = 1.062 for 2618 unique data (q < 27.508) and 142 refined
À3
parameters; final difference synthesis within Æ 0.25 e
.
CCDC 279973–279978 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
[2]D. M. T. Chan, K. L. Monaco, R. Li, D. Bonne, C. G. Clark,
P. Y. S. Lam, Tetrahedron Lett. 2003, 44, 3863.
[3]a) M. P. Sibi, H. Tatamidani, K. Patil, Org. Lett. 2005, 7, 2571;
b) G. Chen, N. Tokunaga, T. Hayashi, Org. Lett. 2005, 7, 2885.
[4]a) T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J.
Hartwig, J. Am. Chem. Soc. 2002, 124, 390; b) T. Ishiyama, J.
Takagi, J. F. Hartwig, N. Miyaura, Angew. Chem. 2002, 114, 3182;
Angew. Chem. Int. Ed. 2002, 41, 3056.
[5]J.-Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka, Jr., M. R.
Smith III, Science 2002, 295, 305.
[6]P. Nguyen, H. P. Blom, S. A. Westcott, N. J. Taylor, T. B. Marder,
J. Am. Chem. Soc. 1993, 115, 9329.
[7]H. Tamura, H. Yamazaki, H. Sato, S. Sakaki, J. Am. Chem. Soc.
2003, 125, 16114.
[8]D. N. Coventry, A. S. Batsanov, A. E. Goeta, J. A. K. Howard,
T. B. Marder, R. N. Perutz, Chemm. Commun. 2005, 2172.
[9]J. Takagi, K. Sato, J. F. Hartwig, T. Ishiyama, N. Miyaura,
Tetrahedron Lett. 2002, 43, 5649.
[15]a) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson,
S. R. Forrest, Appl. Phys. Lett. 2005, 75, 4; b) S. Lamansky, P.
Djurovich, D. Murphy, F. Abdel-Razzag, H. Lee, C. Adachi, P. E.
Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc.
2001, 123, 4304; c) C. Adachi, M. A. Baldo, M. E. Thompson,
S. R. Forrest, J. Appl. Phys. 2001, 90, 5048.
[16]The only reference to this compound we have located is in the
following patent: Jpn. Kokai Tokkyo Koho, 1980, 6 pp, CODEN:
JKXXAF JP 55120570 19800917 Showa. [Chem. Abstr. 1981, 94,
175164].
[17]a) T. B. Hadda, I. Zidane, S. A. Moya, H. Le Bozec, Polyhedron
1996, 15, 1571; b) M. Lepeltier, T. K.-M. Lee, K. K.-W. Lo, L.
Toupet, H. Le Bozec, V. Guerchais, Eur. J. Inorg. Chem. 2005,
110; c) W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, C.-M. Che, N.
Zhu, S.-T. Lee, J. Am. Chem. Soc. 2004, 126, 4958.
[10]T. Ishiyama, N. Miyaura, J. Organomet. Chem. 2003, 680, 3.
Angew. Chem. Int. Ed. 2006, 45, 489 –491
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
491