Fleming et al.
Grignard reagents are sufficiently nucleophilic to overcome
the recalcitrance of alkenenitriles toward conjugate addition
provided that two aryl substituents are present on the R- and
â-carbons.4 Other highly nucleophilic organometallics engage
in conjugate additions to cyclic alkenenitriles devoid of aromatic
substituents in intramolecular additions provided that the
geometry of the alkenenitrile precludes attack on the CN unit.11
A related strategy is to temporarily tether nucleophilic organo-
metallics adjacent to an alkenenitrile through an alkoxide gen-
erated by addition to a ketone12 or deprotonation of an alcohol.13
For example, addition of a Grignard reagent to oxo-
nitrile 114 generates a halomagnesium alkoxide, through carbonyl
addition, which triggers a halogen-alkyl exchange15 with a
second Grignard to afford the alkyl magnesium alkoxide 2
(Scheme 1). Subsequent conjugate addition leads to the bis-mag-
nesiated nitrile 3 that rearranges to the C-magnesiated nitrile 4.
Intercepting 4 with electrophiles allows a formal inter-
molecular conjugate addition-alkylation through the entropi-
cally more favorable16 intramolecular delivery of the carbon
nucleophile.
Historically, the reagent combination of elemental zinc,
copper(I) iodide, and an alkyliodide18 provided a seminal
advance in conjugate additions to alkenenitriles.19 Intensive
optimization in related conjugate additions with enones identi-
fied two critical reaction parameters: the use of a mixed
alcohol-water solvent combination, and ultrasonic irradiation
(Scheme 2).20 Under optimal conditions, alkyl iodides and
bromides engage in conjugate addition reactions with mono-
substituted enoates, enamides, and alkenenitriles. Although the
precise mechanistic details remain uncertain, several key features
point to radical or radicaloid intermediates.21 An electron transfer
at the metal-iodide interface is thought to reduce the alkyl
iodide 6, possibly by electron transfer, to a surface-adsorbed
radical 7 (Scheme 2).19a Subsequent radical addition to an
electron-deficient olefin 8, such as acrylonitrile, generates a
stabilized radical 9 that is reduced and protonated to afford the
conjugate addition product 10.
SCHEME 2. Zn-CuI Conjugate Addition to Activated
Alkenes
SCHEME 1. Chelation-Controlled Conjugate Addition to a
Cyclic Alkenenitrile
The exceptional ability of the zinc-copper alkyliodide reagent
to trigger conjugate additions of alkyl iodides to acyclic
alkenenitriles provided an excellent lead for the more challeng-
ing conjugate additions to cyclic alkenenitriles. Extensive
optimization experiments have identified conditions for this
transformation and stimulated a series of material analyses that
provide new insight into the nature of the active species
previously referred to as a zinc-copper couple. Collectively,
this methodology addresses the long-standing difficulty of
conjugate additions to disubstituted alkenenitriles, demonstrates
the dramatic influence of performing the reaction in the presence
of silica gel, and provides key insight into the exact nature of
the reagent generated from elemental zinc and copper(I) iodide.
Intermolecular conjugate additions of organometallic reagents
to cyclic alkenenitriles remain a significant challenge. A few
organometallic reagents permit conjugate additions to acryloni-
trile, the most reactive alkenenitrile, although most organome-
tallic reagents are unable to react with substituted acrylonitriles.4
Presumably the combination of increased steric demand and
diminished electrophilicity prevents the conjugate addition,
explaining why very few methods are effective with cyclic
alkenenitriles which necessarily contain two substituents as part
of the ring.17
Results and Discussion
(11) (a) Jamison, T. F.; Shambayati, S.; Crowe, W. E.; Schreiber, S. L.
J. Am. Chem. Soc. 1997, 119, 4353. (b) Fleming, F. F.; Hussain, Z.; Weaver,
D.; Norman, R. E. J. Org. Chem. 1997, 62, 1305. (c) Brattesani, D. N.;
Heathcock, C. H. J. Org. Chem. 1975, 40, 2165.
(12) (a) Fleming, F. F.; Zhang, Z.; Wei, G.; Steward, O. W. Org. Lett.
2005, 7, 447. (b) Fleming, F. F.; Zhang, Z.; Wang, Q.; Steward, O. W.
Angew. Chem., Int. Ed. 2004, 43, 1126.
(13) (a) Fleming, F. F.; Zhang, Z.; Wang, Q.; Steward, O. W. J. Org.
Chem. 2003, 68, 7646. (b) Fleming, F. F.; Wang, Q.; Zhang, Z.; Steward,
O. W. J. Org. Chem. 2002, 67, 5953. (c) Fleming, F. F.; Gudipati, V.;
Steward, O. W. Tetrahedron 2003, 59, 5585. (d) Fleming, F. F.; Wang, Q.;
Steward, O. W. J. Org. Chem. 2003, 68, 4235. (e) Fleming, F. F.; Gudipati,
V.; Steward, O. W. Org. Lett. 2002, 4, 659. (f) Fleming, F. F.; Zhang, Z.;
Wang, Q.; Steward, O. W. Org. Lett. 2002, 4, 2493. (g) Fleming, F. F.;
Wang, Q.; Zhang, Z.; Steward, O. W. J. Org. Chem. 2002, 67, 5953.
(14) Fleming, F. F.; Zhang, Z.; Wei, G. Synthesis 2005, 3179.
(15) Swiss, K. A.; Liotta, D. C.; Maryanoff, C. A. J. Am. Chem. Soc.
1990, 112, 9393.
Lead optimization forays engaged 1-chloro-4-iodobutane in
a conjugate addition with cyclohexenecarbonitrile (11a). The
(18) Dupuy, C.; Petrier, C.; Sarandeses, L. A.; Luche, J. L. Synth.
Commun. 1991, 21, 643.
(19) (a) Sua´rez, R. M.; Sestelo, J. P.; Sarandeses, L. A. Synlett 2002,
1435. (b) Blanchard, P.; DaSilva, A. D.; ElKortbi, M. S.; Fourrey, J.-L.;
Robert-Ge´ro, M. J. Org. Chem. 1993, 58, 6517. (c) Readman, S. K.;
Marsden, S. P.; Hodgson, A. Synlett 2000, 1628. (d) Tsunoi, S.; Ryu, I.;
Fukushima, H.; Tanaka, M.; Komatsu, M.; Sonoda, N. Synlett 1995, 1249.
(e) Sarandeses, L. A.; Mourino, A.; Luche, J.-L. J. Chem. Soc., Chem.
Commun. 1992, 798. (f) Blanchard, P.; El Kortbi, M. S.; Fourrey, J.-L.;
Robert-Gero, M. Tetrahedron Lett. 1992, 33, 3319.
(20) (a) Petrier, C.; Dupuy, C.; Luche, J. L. Tetrahedron Lett. 1986, 27,
3149. (b) Luche, J. L.; Allavena, C. Tetrahedron Lett. 1988, 29, 5369.
(21) Several cleverly designed conjugate additions to enones have trapped
the presumed intermediates by employing internal radical traps. The yields
of trapped product are typically in the range of 5-10% and in some cases
the radical is unable to be intercepted: (a) Sarandeses, L. A.; Mourino, A.;
Luche, J.-L. J. Chem. Soc., Chem. Commun. 1992, 798. (b) Luche, J. L.;
Allavena, C.; Petrier, C.; Dupuy, C. Tetrahedron Lett. 1988, 29, 5373.
(16) Eliel, E. L.; Wilen, S. H.; Mander, L. N. In Stereochemistry of
Organic Compounds; Wiley: New York, 1994; pp 676-682.
(17) For a preliminary communication see: Fleming, F. F.; Gudipati, S.
Org. Lett. 2006, 8, 1557.
6962 J. Org. Chem., Vol. 72, No. 18, 2007