concentration-dependent self-association of counter anions with
long-alkyl-chains affects the stability of complexes formed be-
tween the Pt(II) and Pt(IV) species in a rather complicated
manner.
Notes and references
1 For example; (a) S.-M. Peng, C.-C. Wang, Y.-L. Jang, Y.-H. Chen, F.-Y.
Li, C.-Y. Mou and M.-K. Leung, J. Magn. Magn. Mater., 2000, 209,
80; (b) T. Ru¨ffer, M. Ohashi, A. Shima, H. Mizomoto, Y. Kaneda and
K. Mashima, J. Am. Chem. Soc., 2004, 126, 12244.
2 (a) K. Tanaka, A. Tengeiji, T. Kato, N. Toyama and M. Shionoya,
Science, 2003, 299, 1212; (b) K. Tanaka, G. H. Clever, Y. Takezawa, Y.
Yamada, C. Kaul, M. Shionoya and T. Carell, Nature Nanotech., 2006,
1, 190 and references cited therein; (c) K. Tanaka and M. Shionoya,
Chem. Lett., 2006, 35, 694.
3 For example; (a) S. Hiraoka, T. Tanaka and M. Shionoya, J. Am. Chem.
Soc., 2006, 128, 13038; (b) M. Yoshizawa, J. Nakagawa, K. Kumazawa,
M. Nagao, M. Kawano, T. Ozeki and M. Fujita, Angew. Chem., Int.
Ed., 2005, 44, 1810.
The electrospray ionization-time-of-flight (ESI-TOF) mass
spectrum of
a mixture of [1a(Pt(IV)Br2(en))2](RSO3)4 and
[Pt(II)(en)2](RSO3)2 in a 1 : 1 ratio showed a series of peaks around
2064.48 corresponding to a doubly-charged cationic species,
[1a(Pt(IV)Br2(en))2·Pt(II)(en)2·(RSO3)4]2+, as shown in Fig. 3. This
result indicates the formation of a mixed-valence trinuclear com-
plex in solution containing a 1 : 1 mixture of [1a(Pt(IV)Br2(en))2]4+
and [Pt(II)(en)2]2+ species.
4 (a) G. H. Clever and T. Carell, Angew. Chem., Int. Ed., 2007, 46, 250;
(b) Z. Kuklenyik and L. G. Marzilli, Inorg. Chem., 1996, 35, 5654; (c) Y.
Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y.
Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami and A. Ono,
J. Am. Chem. Soc., 2006, 128, 2172; (d) F.-A. Polonius and J. Mu¨ller,
Angew. Chem., Int. Ed., 2007, 46, 5602.
5 (a) P. Day, Low-Dimensional Cooperative Phenomena, ed. H. J. Keller,
Plenum, New York, 1974, pp. 191; (b) R. J. H. Clark, Mixed-Valence
Compounds, ed. D. B. Brown, Reidel, Dordrecht, 1980, pp. 271; (c) H. J.
Keller, Extended Linear Chain Compounds, ed. J. S. Miller, Plenum,
New York, 1982, pp. 357; (d) M. Ueta, H. Kanzaki, K. Kobayashi, Y.
Toyozawa and E. Hanamura, Excitonic Processes in Solids, ed. P. Fulde,
Springer-Verlag, Berlin, 1984, pp. 475.
6 (a) C. Brosset, Ark. Kemi, Mineral. Geol., 1948, 25, 14; (b) B. M.
Craven and D. Hall, Acta Crystallogr., 1961, 14, 475; (c) N. Matsumoto,
M. Yamashita and S. Kida, Bull. Chem. Soc. Jpn., 1978, 51, 3514.
7 M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1967, 10, 247.
8 (a) N. Matsumoto, M. Yamashita and S. Kida, Bull. Chem. Soc. Jpn.,
1978, 51, 2334; (b) H. Okamoto and M. Yamashita, Bull. Chem. Soc.
Jpn., 1998, 71, 2023 and references cited therein.
9 Y. Hamaue, R. Aoki, M. Yamashita and S. Kida, Inorg. Chim. Acta,
1981, 54, 13.
10 H. Kishida, H. Matsuzaki, H. Okamoto, T. Manabe, M. Yamashita, Y.
Taguchi and Y. Tokura, Nature, 2000, 405, 929.
Fig. 3 ESI-TOF mass spectrum of a 1 : 1 mixture of [1a(Pt(IV)Br2(en))2]-
(RSO3)4 and [Pt(II)(en)2](RSO3)2 in 1,2-dichloroethane.
11 (a) Y. Wada, T. Mitani, M. Yamashita and T. Koda, J. Phys. Soc. Jpn.,
1985, 54, 3143; (b) Y. Wada, T. Mitani, K. Toriumi and M. Yamashita,
J. Phys. Soc. Jpn., 1989, 58, 3013; (c) H. Okamoto, K. Toriumi, T.
Mitani and M. Yamashita, Phys. Rev. B: Condens. Matter, 1990, 42,
10381; (d) H. Okamoto, T. Mitani, K. Toriumi and M. Yamashita,
Mater. Sci. Eng., B, 1992, B13, 9.
12 The incorporation of lipophlic counter ions is well known to increase
the solubility of polyionic molecules in organic media; see: (a) K.
Tanaka and Y. Okahata, J. Am. Chem. Soc., 1996, 118, 10679; (b) N.
Kimizuka, N. Oda and T. Kunitake, Chem. Lett., 1998, 7, 695; (c) N.
Kimizuka, S. H. Lee and T. Kunitake, Angew. Chem., Int. Ed., 2000,
39, 389; (d) N. Kimizuka, N. Oda and T. Kunitake, Inorg. Chem., 2000,
39, 2684; (e) N. Kimizuka, Adv. Mater., 2002, 12, 1461; (f) A. Taira and
N. Matsushita, Mol. Cryst. Liq. Cryst., 2002, 379, 297.
13 Y. Einaga, R. Mikami, T. Akitsu and G. Li, Thin Solid Films, 2005,
493, 230.
14 It is well known that a series of analogous quasi-1D halogen-bridged
platinum complexes show an intensive CT band around 360 nm
which can shift widely depending on the counter anions.6c,8a,b,11a,12 The
assignment of the absorption band around 360 nm observed in this
work will be reported elsewhere after further investigation.
In summary, we have designed and synthesized novel synthetic
peptides and their complexes bearing a discrete number of
Pt(II) or Pt(IV) ions for a template-directed synthetic approach
to discrete halogen-bridged mixed-valence platinum complexes
in solution. In the 1H NMR, UV-vis absorption and ESI-
TOF mass spectral studies using [1a(Pt(IV)Br2(en))2](RSO3)4 and
[Pt(II)(en)2](RSO3)2, a significant interaction was observed be-
tween [1a(Pt(IV)Br2(en))2]4+ and [Pt(II)(en)2]2+ and the formation
of a mixed-valence trinuclear complex in solution containing a
1 : 1 mixture of the Pt(IV) and Pt(II) species was confirmed by
mass spectrometry. The present study would provide a new clue to
a template-directed synthesis of discrete halogen-bridged mixed-
valence platinum complexes with novel functions depending
on their number and sequence in relation to nanomagnetism,
conductivity or catalysis.
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 5369–5371 | 5371
©