C O MMU N I C A T I O N S
of transition dipoles in a branched macromolecular system and
hence gives molecular geometry information as well. As shown in
Figure 2, the fluorescence anisotropy of P(DSB)
3
decays to a
decay to a
residual value of 0.140, while N(DSB) and C(DSB)
3
4
residual value of 0.082 during the same decay time window.
Theoretically, the residual anisotropy value for a planar three-fold
1
1,12
symmetrical dipole arrangement in a branched system is 0.1.
The difference in the residual anisotropy value indicates that the
dipole arrangement around the branching center of P(DSB) deviates
from planarity to a greater extent than that of N(DSB) and
C(DSB) . The pyramidal structure of P(DSB) makes the angle
between absorption and emission transition dipoles of the chro-
mophore system smaller than that of C(DSB) . This changes the
3
3
Figure 1. The normalized UV/vis and fluorescence spectra of DSB,
P(DSB)3, N(DSB)3, and C(DSB)4 in CHCl3.
4
3
4
average angle between transition dipoles, which is strongly related
to the structure of the branched chromophore system, and hence
alters the value of the residual anisotropy.
In conclusion, we have compared the influence of the branching
centers on the energy transfer dynamics in dendritic core macro-
molecules. This investigation provides more insight into the
understanding of the energy delocalization from different cores in
a dendrimer. We have shown that the geometry, structural arrange-
ment of transition dipoles around the branching center, and the
delocalization across the branching center are important in deter-
mining the mode of energy transfer in dendritic architectures.
Acknowledgment. T.G. III acknowledges the NSF (DMR-
0880044) and AFOSR for support.
Figure 2. The fluorescence anisotropy decay for DSB, P(DSB)3, N(DSB)3,
and C(DSB)4 in CHCl3. λex ) 390 nm, and λem ) 480 nm. The solid lines
are fits to the experimental curves.
0
Supporting Information Available: Synthetic procedures of P(SB)
3
and P(DSB) (PDF). This material is available free of charge via the
Internet at http://pubs.acs.org.
3
fs for C(DSB)
found for N(DSB)
between chromophores in the C(DSB)
the dominant mechanism.10 However, the fast energy migration
processes observed in the N(DSB) system suggest a coherent
mechanism.3 The presence of a slow decay component in the
anisotropy of C(DSB) and P(DSB) before it reaches the residual
4
, and a monoexponential decay time of 57 fs was
. A F o¨ rster-type incoherent energy transfer
system was suggested as
3
4
References
(
1) (a) Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.;
3
Sassa, T.; Dalton, L. R.; Jen, A. K.-Y. AdV. Funct. Mater. 2002, 12, 565.
(b) Ma, H.; Chen, B.; Sassa, T.; Dalton, L. R.; Jen, A. K.-Y. J. Am. Chem.
Soc. 2001, 123, 986. (c) Drobizhev, M.; Karotki, A.; Rebane, A.; Spangler,
C. W. Opt. Lett. 2001, 26, 1081. (d) Chung, S.-J.; Lin, T.-C.; Kim, K.-S.;
He, G. S.; Swiatkiewicz, J.; Prasad, P. N.; Baker, G. A.; Bright, F. V.
Chem. Mater. 2001, 13, 4071.
4
3
value is clear evidence of the presence of weaker interactions among
the DSB chromophore segments. The presence of the faster
(
2) (a) Kopelman, R.; Shortreed, M.; Shi, Z. Y.; Tan, W. H.; Xu, Z. F.; Moore,
J. S.; BarHaim, A.; Klafter, J. Phys. ReV. Lett. 1997, 78, 1239. (b)
Bruosmiche, D. W.; Serin, J. M.; Frechet, J. M. J.; He, G. S.; Lin, Tzu-
Chau; Chung, S. J.; Prasad, P. N. J. Am. Chem. Soc. 2003, 125, 1448. (c)
Varnavski, O.; Menkir, G.; Burn, P. L.; Goodson, T., III. Appl. Phys.
Lett. 2000, 77, 1120.
component in both C(DSB)
4 3
and P(DSB) systems, which is
comparable to the N(DSB) decay time, may suggest that there is
3
some contribution of coherent delocalization of excitation as well.
Yet, we believe the incoherent hopping type of energy transfer
(
3) Varnavski, O.; Samuel, I. D. W.; Pålsson, L.-O.; Beavington, R.; Burn,
P. L.; Goodson, T., III. J. Chem. Phys. 2002, 116, 8893.
dynamics dominates in both C(DSB)
difference in anisotropy decay times for C(DSB)
suggest that the interactions among DSB chromophore segments
are weaker in C(DSB) than in P(DSB) . This can be explained by
considering the geometry of the branched macromolecules. In
P(DSB) , three distyrylbenzene chromophores are grouped in a
fairly pyramidal arrangement around the phosphorus. This pyra-
midal structure of P(DSB) may be responsible for the relatively
stronger interaction among DSB segments as it holds the three DSB
segments closer together than the tetrahedral structure of C(DSB)
The presence of a lone pair of electrons on P can lead to more
efficient delocalization of electrons as compared to C(DSB) where
no such delocalization is possible. Yet, because of the size and
geometry of P(DSB) , this increase in strength of interaction is not
4
and P(DSB)
3
systems. The
4
and P(DSB)
3
may
(4) Chen, W.; Xu, L.; Xiao, J. Org. Lett. 2000, 2, 2675.
(
5) (a) Malagoli, M.; Bredas, J. L. Chem. Phys. Lett. 2000, 327, 13. (b)
Oldham, W. J., Jr.; Lachicotte, R. J.; Bazan, G. C. J. Am. Chem. Soc.
4
3
1998, 120, 2987.
(6) Hartley, F. R. The Chemistry of Organophosphorus Compounds; John
Wiley & Sons: New York, 1990; Vol. 1, Chapter 2.
3
(
7) Murrell, J. N. The Theory of the Electronic Spectra of Organic Molecules;
John Wiley & Sons: New York, 1963; Chapter 10.
(
8) (a)Varnavski, O.; Leanov, A.; Liu, L.; Takacs, J.; Goodson, T., III. Phys.
ReV. B 2000, B61, 12732. (b) Varnavski, O.; Ispasoiu, R. G.; Balogh, L.;
Tomalia, D. A.; Goodson, T. G. J. Chem. Phys. 2001, 114, 1962.
9) (a) Ranasinghe, M. I.; Varnavski, O. P.; Pawlas, J.; Hauck, I. H.; Louie,
J.; Hartwig, J. F.; Goodson, T., III. J. Am. Chem. Soc. 2002, 124, 6520.
3
(
4
.
(
b) Ranasinghe, M. I.; Wang, Y.; Goodson, T., III. J. Am. Chem. Soc.
2
003, 125, 5258.
4
(
10) Varnavski, O. P.; Ostrowski, J. C.; Sukhomlinova, L.; Twieg, R. J.; Bazan,
G. C.; Goodson, T., III. J. Am. Chem. Soc. 2002, 124, 1736.
(11) (a) Wynne, K.; Hochstrasser, R. M. Chem. Phys. 1993, 171, 179. (b) Knox,
R.; Gulen, D. Photochem. Photobiol. 1993, 57, 40. (c) Bradforth, S. F.;
Jimenez, R.; van Mourik, F.; van Grondelle, R.; Fleming, G. R. J. Phys.
Chem. 1995, 99, 16179.
3
significant enough to push the energy transfer into the coherent
regime.
The residual value of the fluorescence anisotropy (before
rotational diffusion) also contains information of the arrangement
(12) Demidov, A. A.; Andrews, D. L. Photochem. Photobiol. 1996, 63, 36.
JA035215Y
J. AM. CHEM. SOC.
9
VOL. 125, NO. 32, 2003 9563