Paper
Mechanism of lubrication by ILs can be thought as a
combination of the following processes: (i) ILs tend to adsorb
on rubbed surfaces due to their ionic nature. This process is
encouraged by the electron deciency of the interacting steel
surfaces.13,17 Adsorption leads to formation of easy to shear
overlayers of anions and cations. (ii) ILs can break down and
chemically react with the rubbed surfaces forming protective
overlayers usually called “tribolms”.
As noted above, tribological performance of an IL in the base
uid is affected by its interactions with the base uid. Two
categories of interactions can be distinguished: (i) interactions
between ions in IL and (ii) interactions between the ions of IL
and the molecules of the base oil. In general, less interaction
between an IL and the base uid means higher availability of
RSC Advances
3 F. U. Shah, S. Glavatskih, D. R. MacFarlane, A. Somers,
M. Forsyth and O. N. Antzutkin, Phys. Chem. Chem. Phys.,
2011, 13, 12865–12873.
4 J. Ranke, S. Stolte, R. Stormann, J. Arning and B. Jastorff,
Chem. Rev., 2007, 107, 2183–2206.
5 R. P. Swatloski, J. D. Holbrey and R. D. Rogers, Green Chem.,
2003, 5, 361–363.
6 A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton,
S. Sheff, A. Wierzbicki, J. H. Davis Jr and R. D. Rogers,
Chem. Commun., 2001, 1, 135–136.
7 T. Welton, Coord. Chem. Rev., 2004, 248, 2459–2477.
8 M. Antonietti, D. Kuang, B. Smarsly and Y. Zhou, Angew.
Chem., Int. Ed., 2004, 43, 4988–4992.
9 X. Sun, H. Luo and S. Dai, Chem. Rev., 2011, 112, 2100–2128.
the IL additive at the contacting surfaces, and thus better fric- 10 W. Zheng, A. Mohammed, L. G. Hines Jr, D. Xiao,
tion and wear performance.13,29
O. J. Martinez, R. A. Bartsch, S. L. Simon, O. Russina,
A. Triolo and E. L. Quitevis, J. Phys. Chem. B, 2011, 115,
6572–6584.
4 Conclusion
11 X. Liu, F. Zhou, Y. Liang and W. Liu, Wear, 2006, 261, 1174–
Halogen-free boron-based ILs, namely pyrrolidinium bis(man-
1179.
delato)borates with different alkyl chain lengths in the pyrroli- 12 H. Arora and P. Cann, Tribol. Int., 2010, 43, 1908–1916.
dinium cation, were successfully synthesised and characterised. 13 A. E. Somers, B. Khemchandani, P. C. Howlett, J. Sun,
The synthesised ILs are liquids at room temperature with glass
transition temperatures ranging from 218 to 241 K. The length
D. R. MacFarlane and M. Forsyth, ACS Appl. Mater.
Interfaces, 2013, 5, 11544–11553.
of the longest alkyl chain bonded to the nitrogen atom of the 14 S. Fang, Z. Zhang, Y. Jin, L. Yang, S. Hirano, K. Tachibana
pyrrolidinium cation has a signicant inuence on the physi-
and S. Katayama, J. Power Sources, 2011, 196, 5637–5644.
cochemical properties of this class of hf-BILs. Glass transition 15 T. Welton, Chem. Rev., 1999, 99, 2071–2084.
temperatures varied as a function of the number of carbon 16 A. Berthod, M. Ruiz-Angel and S. Carda-Broch, J. Chromatogr.
atoms in the longest alkyl chain in pyrrolidinium cations. An
“odd–even” effect on Tg of these hf-BILs was discovered. Lower 17 A. E. Somers, P. C. Howlett, D. R. MacFarlane and
Tg values for n ¼ 5 and 7 and higher Tg values for n ¼ 4, 6, 8, 10, M. Forsyth, Lubricants, 2013, 1, 3–21.
12 and 14 were observed. Density of hf-BILs decreases 18 T. Fukushima and T. Aida, Chem.–Eur. J., 2007, 13, 5048–
linearly with the increasing temperature in the temperature 5058.
range typical for lubrication industry. [CnC1Pyrr][BMB] hf-BILs 19 R. L. Gardas, H. F. Costa, M. G. Freire, P. J. Carvalho,
A, 2008, 1184, 6–18.
(n ¼ 4–8 and 12) if added to PEG at 3 wt% signicantly reduce
I. M. Marrucho, I. M. Fonseca, A. G. Ferreira and
J. A. Coutinho, J. Chem. Eng. Data, 2008, 53, 805–811.
friction and wear in the steel–steel contacts in comparison with
the neat PEG and 5W40 oil. The best performance is provided by 20 P. Wasserscheid, A. Bosmann and R. V. Hal, US Patent,
the [C4C1Pyrr][BMB] hf-BIL.
7,863,458, 2011.
21 F. U. Shah, S. Glavatskih, P. M. Dean, D. R. MacFarlane,
M. Forsyth and O. N. Antzutkin, J. Mater. Chem., 2012, 22,
6928–6938.
Acknowledgements
The Knut and Alice Wallenberg Foundation and the Swedish 22 M. Yang, F. Xu, Q. Liu, P. Yan, X. Liu, C. Wang and U. Welz-
Research Council are gratefully acknowledged for supporting
Biermann, Dalton Trans., 2010, 39, 10571–10573.
this work. The Foundation in memory of J. C. and Seth 23 S. Yu, S. Lindeman and C. D. Tran, J. Org. Chem., 2008, 73,
M. Kempe is gratefully acknowledged for the grants for NMR 2576–2591.
equipment at LUT, stipends for MT and FUS and chemicals. 24 D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth and
Swedish Research School in Tribology is acknowledged for G. B. Deacon, Chem. Commun., 2001, 273, 1430–1431.
nancing MT's research visits to Ghent University, Belgium. We 25 M. A. Rocha, J. A. Coutinho and L. M. Santos, J. Phys. Chem.
thank Prof. Velaga and Dr Shimpi for assistance with DSC and
TGA experiments at LUT.
B, 2012, 116, 10922–10927.
26 P. Wasserscheid and W. Keim, Angew. Chem., 2000, 39, 3772–
3789.
27 M. Nieuwenhuyzen, K. R. Seddon, F. Teixidor, A. V. Puga and
C. Vinas, Inorg. Chem., 2009, 48, 889–901.
References
1 F. U. Shah, S. Glavatskih and O. N. Antzutkin, Tribol. Lett., 28 C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. Aki and
2013, 51, 281–301. J. F. Brennecke, J. Chem. Eng. Data, 2004, 49, 954–964.
2 C. Ye, W. Liu, Y. Chen and L. Yu, Chem. Commun., 2001, 21, 29 R. Gusain, R. Singh, K. Sivakumar and O. P. Khatri, RSC Adv.,
2244–2245.
2014, 4, 1293–1301.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 30617–30623 | 30623