Reduction of Monophosphaallenes
J. Phys. Chem. A, Vol. 102, No. 51, 1998 10475
TABLE 10. Calculated Isotropic (AIso) and Anisotropic (τ) Hyperfine Coupling Constants (MHz) for the Monophosphaallylic
Radical (HP-CHdCH2)•
cis-like
trans-like
UHF-
MP2-
B3LYP-
SCI-
SCI-
UHF-
MP2-
B3LYP-
SCI-
SCI-
3-21+G* 6311++G** 6311++G** 631+G* aug-cc-pVDZ 3-21+G* 6311++G** 6311++G** 631+G* aug-cc-pVDZ
13
A
A
A
A
( C(1))
-49
54
93
20
7
89
-89
-59
-53
35
-32
27
109
9
9
12
-21
-29
-30
59
-273
-255
528
-2
5
-30
33
196
4
-30
24
221
4
-48
54
93
19
7
89
-89
-62
-51
-15
34
-32
28
106
8
8
13
-21
-29
-31
60
-254
-271
525
-3
6
-30
34
192
4
-30
25
212
3
iso
iso
iso
13
( C(2))
31
( P)
iso (1H(7))
τ (13C(1))
τ (13C(2))
τ (31P)
6
8
6
8
6
9
6
9
11
-15
-20
-3
11
-18
-25
-27
52
-209
-194
403
-3
7
-14
-21
-22
43
-249
-229
477
-1
4
-14
-21
-23
44
-242
-223
465
-1
5
-18
-25
-27
52
-195
-208
403
-3
7
-19
-14
-21
-23
44
-227
-248
475
-2
5
-14
-22
-24
45
-222
-242
464
-2
5
0
0
3
-3
3
-249
-210
459
-4
-210
-248
458
-5
τ (1H(7))
17
17
-4
-13
-3
-3
-3
-4
-12
-3
-3
-3
This implies a broadening of the central pattern which is
consistent with the absence of 13C hyperfine splitting in the
perpendicular region of the experimental spectrum and justifies
the additional proton coupling used for the simulation of the
frozen solution spectra.
Acknowledgment. We thank the Swiss National Science
Foundation for financial support. The support of French CNRS-
IDRIS is also greatly acknowledged.
References and Notes
These results unambiguously show that the neutral radical 4
obtained by capture of a proton by the primary negative ion is
a much better candidate for the EPR spectra.
(1) (a) Multiple Bonds and Low Coordination in Phosphorus Chemistry;
Regitz, M., Scherer, O., Eds.; Thieme: New York, 1990. (b) Canac, Y.;
Baceiredo, A.; Schoeller, W. W.; Gigmes, D.; Bertrand, G. J. Am. Chem.
Soc. 1997, 119, 7579.
(2) (a) Nixon, J. F. Chem. ReV. 1988, 88, 1327. (b) Bourissou, D.;
Canac, Y.; Collado, M. I.; Baceiredo, A.; Bertrand, G. J. Am. Chem. Soc.
1997, 119, 9923.
(3) (a) Geoffroy, M.; Jouaiti, A.; Terron, G.; Cattani-Lorente, M.;
Ellinger, Y. J. Phys. Chem. 1992, 96, 8241. (b) Al Badri, A.; Chentit, M.;
Geoffroy, M.; Jouaiti, A. J. Chem. Soc., Faraday Trans. 1997, 93, 3631.
(4) Sidorenkova, H.; Chentit, M.; Jouaiti, A.; Terron, G.; Geoffroy,
M.; Ellinger, Y. J. Chem. Soc., Perkin 2 1998, 71.
(5) Appel, R.; Fo¨lling, P.; Josten, B.; Siray, M.; Winkhaus, V.; Knoch,
F. Angew. Chem., Int. Ed. Engl. 1984, 23, 619.
(6) Goede, S. J.; Bickelhaupt, F. Chem. Ber. 1991, 124, 2677.
(7) Yoshifuji, M.; Sasaki, S.; Inamoto, N. Tetrahedron. Lett. 1989, 30,
839.
Conclusion
Although the EPR parameters measured with an electro-
chemically reduced solution of 1a are not, a priori, inconsistent
with the formation of the radical anion, the quantum-mechanics
calculations clearly show that the hyperfine interactions for 3
are quite different from those calculated for 2- and that the
experimental couplings are considerably more in accordance
with the neutral allylic structure 4 than with that of the
negatively charged species 2-. In fact, this identification agrees
(8) WINEPR SimFonia (version 1.25); Bruker Analytische Messtecknik
Gmbh, 1996.
(9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.
A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Ciolowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. Gaussian 94, Revision B.1.; Gaussian
Inc.: Pittsburgh, PA, 1995.
(10) Dupuis, M.; Johnston, F.; Marquez, A. HONDO 8.5 from CHEM-
Station; IBM Corp.: Kingston, NY, 1994.
(11) McMurchie, L.; Elbert, S.; Langhoff, S.; Davidson, E. R. (modified
by Feller, D.; Cave, R. J.; Rawlings, D.; Frey, R.; Daasch, R.; Nitzche, L.;
Phillips, P.; Iberle, K.; Jackels, C.; Davidson, E. R.) MELDF Suite of
Programs; 1990/91.
(12) Morton, J. R.; Preston, K. F. J. Magn. Reson. 1978, 30, 577.
(13) Chentit, M.; Sidorenkova, H.; Jouaiti, A.; Terron, G.; Geoffroy,
M.; Ellinger, Y. J. Chem. Soc., Perkin Trans. 2 1997, 921.
(14) Feller, D.; Huyser, E. S.; Borden, W. T.; Davidson, E. R. J. Am.
Chem. Soc. 1983, 105, 1459.
(15) Nguyen, M. T.; Hegarty, A. F. J. Chem. Soc., Perkin Trans. 2 1985,
1999.
(16) Bauschlicher, C. W.; Langhoff, S. R. Spectrochim. Acta A 1997,
53, 1225.
(17) (a) Dunning, T. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R.
A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
(18) Parisel, O.; Giessner-Prettre, C.; Ellinger, Y. Chem. Phys. Lett. 1996,
250, 178.
with two experimental results: (1) the cyclic voltammogram
which reveals an irreversible reduction consistent with a rapid
transformation of the anion. (2) The simulations of the frozen
solution spectra which are consistent with an additional small
coupling with a proton bound to the central carbon atom.
It is worthwhile commenting on the theoretical predictions
for the two observables associated to the magnetic hyperfine
interaction. Whereas single-determinant calculations may lead
to acceptable values of the dipolar coupling tensors, we have
seen here that the Fermi contact interaction varies considerably
on passing from simple SCF, to Moller Plesset, and to CI
calculations. Anisotropic coupling constants, which are better
approximated by a single-determinant representation, are there-
fore considerably more pertinent than the Fermi contact for the
identification of paramagnetic reaction intermediates at lower
levels of theory. DFT calculations appear as an alternative to
the more expensive CI treatments, especially for dipolar
interactions.