butanediol as shown in Scheme 2. Assuming the predominant
generation of the E-nitronate,8 the observed high syn
selectivity could not be fully rationalized by the nonchelate,
acyclic extended transition-state model.9 This stereochemical
preference may be accounted for by the severe steric
congestion caused by the chiral quaternary ammonium cation,
overwhelming the repulsion between the cyclohexenone
framework and the nitroalkane side chain (Et) (Figure 1, A
Table 2. Catalytic Asymmetric Conjugate Addition of
Nitroalkanes (3) to Cyclic R,â-Unsaturated Ketones (2) under
Phase-Transfer Conditionsa
Figure 1. Plausible transition-state model.
vs B). Judging from the product configuration, the chiral
ammonium cation should effectively shield the re-face of
the nitronate, and the selective approach of the cyclic enone
from the si-face should result.
Based on the above findings, we selected the catalysis of
1b at -20 °C (0.05 M substrate concentration) as optimal
conditions in terms of both asymmetric induction and reac-
tion efficiency and applied it in further experiments to probe
the substrate scope. The representative results summarized
in Table 2 clearly demonstrate the potential of this phase-trans-
fer-catalyzed conjugate addition protocol. Various prochiral
a Unless otherwise noted, the reaction was conducted with 5 equiv of 3
in the presence of 3 equiv of Cs2CO3 and 1 mol % of (S,S)-1b in toluene
at -20 °C for the given reaction time. Assignment of the relative and
absolute configurations was deduced from that of 4a. b Isolated yield. c De-
termined by 1H and 13C NMR analyses. d Enantiopurity of the major syn-4
was determined by HPLC analysis using a chiral column. For details, see
the Supporting Information. e Performed at -30 °C. f With 2 mol % of 1b.
(4) (a) Davis. A. P.; Dempsey, K. J. Tetrahedron: Asymmetry 1995, 6,
2829. (b) Keller, E.; Veldman, N.; Spek, A. L.; Feringa, B. L. Tetrahe-
dron: Asymmetry 1997, 8, 3403. (c) Funabashi, K.; Saida, Y.; Kanai, M.;
Arai, T.; Sasai, H.; Shibasaki, M. Tetrahedron Lett. 1998, 39, 7557. (d)
Corey, E. J.; Zhang, F.-Y. Org. Lett. 2000, 2, 4257. (e) Kim, D. Y.; Huh,
S. C. Tetrahedron 2001, 57, 8933. (f) Bako´, T.; Bako´, P.; Szo¨llo˜sy, AÄ .;
Czugler, M.; Keglevich, G.; To˜ke, L. Tetrahedron: Asymmetry 2002, 13,
203. (g) Halland, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002,
67, 8331. (h) Itoh, K.; Kanemasa, S. J. Am. Chem. Soc. 2002, 124, 13394.
(i) Allingham, M. T.; Howard-Jones, A.; Murphy, P. J.; Thomas, D. A.;
Caulkett, P. W. R. Tetrahedron Lett. 2003, 44, 8677. (j) Vakulya, B.; Varga,
S.; Csa´mpai, A.; Soo´s, T. Org. Lett. 2005, 7, 1967.
(5) (a) Yamaguchi, M.; Shiraishi, T.; Igarashi, Y.; Hirama, M. Tetra-
hedron Lett. 1994, 35, 8233. (b) Yamaguchi, M.; Igarashi, Y.; Reddy, R.
S.; Shiraishi, T.; Hirama, M. Tetrahedron 1997, 53, 11223. (c) Hanessian,
S.; Pham, V. Org. Lett. 2000, 2, 2975. See also: (d) Schionato, A.; Paganelli,
S.; Botteghi, C.; Chelucci, G. J. Mol. Catal. 1989, 50, 11. (e) Tsogoeva, S.
B.; Jagtap, S. B. Synlett 2004, 2624.
(6) (a) Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem.
Soc. 2000, 122, 5228. (b) Ooi, T.; Taniguchi, M.; Kameda, M.; Maruoka,
K. Angew. Chem., Int. Ed. 2002, 41, 4542. (c) Ooi, T.; Kameda, M.;
Maruoka, K. J. Am. Chem. Soc. 2003, 125, 5139. (d) Ooi, T.; Kameda, M.;
Taniguchi, M.; Maruoka, K. J. Am. Chem. Soc. 2004, 126, 9685. See also:
(e) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 2054.
(7) Ooi, T.; Fujioka, S.; Maruoka, K. J. Am. Chem. Soc. 2004, 126,
11790.
nitroalkanes were employed for the addition to cyclohexen-
one, and the corresponding γ-nitro ketones were obtained in
excellent chemical yields with high diastereo- and enantioselec-
tivities (entries 1-5). It should be noted that steric constraints
arising from the â- and γ-substituent of nitroalkane can be
overcome by using 2 mol % of 1b (entries 3 and 4). As an
acceptor, cycloheptenone and even cyclooctenone were found
to be a good candidate, though insufficient diastereocontrol
was observed in the case of cyclooctenone probably due to
its conformational flexibility (entries 6 and 7). Moreover,
the reaction with cyclohexenone derivative possessing addi-
tional functionilities such as 2-cyclohexen-1,4-dione monoket-
al appeared feasible with high efficiency and stereoselec-
tivities (entry 8).
In conclusion, we have demonstrated the effectiveness of
the chiral phase-transfer catalysis of N-spiro chiral quaternary
ammonium bromide 1b for the highly diastereo- and enan-
tioselective conjugate addition of nitroalkanes to cyclic R,â-
unsaturated ketones. This study certainly expands the scope
of our approach, and also implies the possibility of elaborat-
(8) Seebach, D.; Beck, A. K.; Mukhopadhyay, T.; Thomas, E. HelV.
Chim. Acta 1982, 65, 1101.
(9) (a) Noyori, R.; Nishida, I.; Sakata, J. J. Am. Chem. Soc. 1981, 103,
2016. (b) Noyori, R.; Nishida, I.; Sakata, J. J. Am. Chem. Soc. 1983, 105,
1598.
Org. Lett., Vol. 7, No. 23, 2005
5145