Angewandte Chemie International Edition
10.1002/anie.201914215
COMMUNICATION
(
a) CyclopropylZnBr (3.0 equiv.), Pd(PPh
Pd(PPh Cl
Cp*Ru(MeCN)
Cp*Ru(MeCN)
3
)
2
Cl
2
(20 mol%) in THF (0.1 M). (b) Phenylacetylene (2.0 equiv.), N-methylmorpholine (2.0 equiv.), CuI (25 mol%),
)
3 2
2
(10 mol%) in THF (0.1 M). (c) 2-Vinylnaphthalene (2.0 equiv.), K
2
CO
(1 mol%) in THF (0.1 M). (e) LiBr (1.5 equiv.), [Cp*Ru(MeCN)
(5 mol%) in THF (0.1 M).
3
(2.5 equiv.), Pd
2 3
(dba) (10 mol%) in DMF (0.1 M). (d) LiCl (1.5 equiv.),
+
–
[
[
3
]PF
6
6
3
]PF (5 mol%) in THF (0.1 M). (f) [Me N ][ SCF ] (1.2 equiv.),
6
4
3
3
]PF
[
19]
As their aromatic counterparts,
the alkenyl thianthrenium
[3]
a) V. I. Timokhin, S. S. Stahl, J. Am. Chem. Soc. 2005, 127, 17888–
7893. b) J. M. Schomaker, W. C. Boyd, I. C. Stewart, F. D. Toste, R. G.
1
salts serve as excellent electrophiles in follow up
transformations and thus differ from other alkenyl sulfonium salts
that have narrower reactivity (Table 2). Palladium-catalyzed
cross coupling reactions generally proceed with retention of the
double bond geometry (34, 35, 36, and see Supporting
Information). The alkenyl thianthrenium salts also serve as
suitable electrophiles for ruthenium-based catalysis, which
enable the synthesis of alkenyl halides (37, 38) and
pseudohalides (39), also stereoselectively: For example,
chlorination in the presence of [Cp*Ru(MeCN) ]PF as catalyst
3 6
was performed successfully on gram-scale, and alkenyl
trifluoromethyl thioether, which is difficult to access otherwise is
readily obtained. Although Ru(II) catalysts are often proposed
to have slow oxidative addition to alkenyl halides,
Cp*Ru(MeCN) ]PF showed robust catalytic reactivity in the
Bergman, J. Am. Chem. Soc. 2008, 130, 3777–3779. c) R. H. Crabtree,
Chem. Rev. 2010, 110, 575–575. d) C. Zhao, F. D. Toste, R. G.
Bergman, J. Am. Chem. Soc. 2011, 133, 10787–10789. e) M. J. Koh, T.
T. Nguyen, H. Zhang, R. R. Schrock, A. H. Hoveyda, Nature 2016, 531,
459–465.
[4]
a) H. Jin, J. Uenishi, W. J. Christ, Y. Kishi, J. Am. Chem. Soc. 1986,
108, 5644–5646. b) C. C. C. Johansson Seechurn, M. O. Kitching, T. J.
Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062–5085. c) K.
A. Johnson, S. Biswas, D. J. Weix, Chem. Eur. J. 2016, 22, 7399–7402.
d) A. M. Olivares, D. J. Weix, J. Am. Chem. Soc. 2018, 140, 2446–2449.
R. T. Morrison, R. N. Boyd, Organic Chemistry 6th Ed., Prentice Hall,
Inc.: Englewood Cliffs, NJ, 1992, pp 287–310.
[
5]
[
[
6]
7]
C. Morrill, R. H. Grubbs, J. Org. Chem. 2003, 68, 6031–6034.
P. Pawluć, G. Hreczycho, J. Szudkowska, M. Kubicki, B. Marciniec, Org.
Lett. 2009, 11, 3390–3393.
[
24]
[
25]
[
3
6
[8]
a) F. Gao, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10961–10963.
b) M. R. Uehling, R. P. Rucker, G. Lalic, Angew. Chem. Int. Ed. 2014,
reactions using alkenyl thianthrenium salts as electrophiles.
Retention of double bond geometry was observed for all cross
coupling reactions; also those of trisubstituted olefins (see
Supporting Information).
5
3, 6473-6476. c) A. M. Suess, G. Lalic, Synlett 2016, 27, 1165–1174.
a) K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408–
410. b) G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 2173–2174.
[
[
9]
7
10] Selected references for hydrofunctionalization and difunctionalization of
olefins: a) R. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev. 2011, 111,
In conclusion, we have reported a synthesis of alkenyl
electrophiles, directly from unactivated olefins, which proceeds
regio- and stereoselectively for a large variety of olefin classes.
Preliminary mechanistic studies suggest that thianthrenation
could proceed via an unusual inverse electron demand
cycloaddition reaction. The corresponding alkenyl sulfonium
salts that can tolerate a large scope of functional groups are
suitable electrophiles for Pd-catalyzed C–C cross coupling
reactions and Ru-catalyzed C–X bonds formation reactions.
2981–3019. b) H. T. Dao, C. Li, Q. Michaudel, B. D. Maxwell, P. S.
Baran, J. Am. Chem. Soc. 2015, 137, 8046–8049. c) S. Guo, F. Cong,
R. Guo, L. Wang, P. Tang, Nat. Chem. 2017, 9, 546–551. d) C. Chen, Y.
Luo, L. Fu, P. Chen, Y. Lan, G. Liu, J. Am. Chem. Soc. 2018, 140,
1207–1210. e) L. J. Oxtoby, J. A. Jr. Gurak, S. R. Wisniewski, M. D.
Eastgate, K. M. Engle, Trends Chem. 2019, 1, 572–587.
[11] T. T. Nguyen, M. J. Koh, X. Shen, F. Romiti, R. R. Schrock, A. H.
Hoveyda, Science 2016, 352, 569–575.
[
12] a) J. Terao, K. Torii, K. Saito, N. Kambe, A. Baba, N. Sonoda, Angew.
Chem. Int. Ed. 1998, 37, 2653–2656. b) K. Hirano, H. Yorimitsu, K.
Oshima, J. Am. Chem. Soc. 2007, 129, 6094–6095. c) B. Lu, J. R.Falck,
J. Org. Chem. 2010, 75, 1701–1705. d) J. R. McAtee, S. E. S. Martin, D.
T. Ahneman, K. A. Johnson, D. A. Watson, Angew. Chem. Int. Ed. 2012,
Acknowledgements
51, 3663–3667. Angew. Chem. 2012, 124, 3723–3727. e) S. E. S.
Martin, D. A. Watson, J. Am. Chem. Soc. 2013, 135, 13330–13333.
MPI für Kohlenforschung is gratefully acknowledged for funding.
We thank S. Marcus and D. Kampen (MPI KOFO) for mass
spectrometry analysis and M. Kochius and Dr. M. Leutzsch (MPI
KOFO) for nuclear magnetic resonance spectroscopy analysis.
We thank D. Chamier Cieminski for synthesizing starting
material 17 and L. Torkowski for providing thianthrene-S-oxide.
Dr. M. van Gastel is greatly acknowledged for his help with the
UV-vis measurements.
[
13] a) M. Morimoto, T. Miura, M. Murakami, Angew. Chem. Int. Ed. 2015,
54, 12659–12663. b) W. B. Reid, J. J. Spillane, S. B. Krause, D. A.
Watson, J. Am. Chem. Soc. 2016, 138, 5539–5542. c) W. B. Reid, D. A.
Watson, Org. Lett. 2018, 20, 6832–6835.
[
[
[
14] a) M. Teruaki, H. Eiichiro, Y. Tohru, Chem. Lett. 1995, 24, 505–506. b)
S. Maity, S. Manna, S. Rana, T. Naveen, A. Mallick, D. Maiti, J. Am.
Chem. Soc. 2013, 135, 3355–3358.
15] D.-W. Gao, E. V. Vinogradova, S. K. Nimmagadda, J. M. Medina, Y.
Xiao, R. M. Suciu, B. F. Cravatt, K. M. Engle, J. Am. Chem. Soc. 2018,
140, 8069–8073.
Keywords: alkenes • regioselective • C–H functionalization •
alkenyl electrophiles • cross-coupling reactions
16] M. H. Aukland, F. J. T. Talbot, J. A. Fernández-Salas, M. Ball, A. P.
Pulis, D. J. Procter, Angew. Chem. Int. Ed. 2018, 57, 9785–9789.
Angew. Chem. 2018, 130, 9933–9937.
[
[
1]
2]
a) G. R. Lappin, J. D. Sauer, Alpha Olefins Applications Handbook
Marcel Dekker, New York, 1989, pp 329–433. b) S. R. Dubbaka, P.
Vogel, Angew. Chem. Int. Ed. 2005, 44, 7674–7684. c) A. L. Hansen, J.
P. Ebran, M. Ahlquist, P. O. Norrby, T. Skrydstrup, Angew. Chem. Int.
Ed. 2006, 45, 3349–3353. Angew. Chem. 2006,118, 3427–3431. d) D.-
G. Yu, B.-J Li, Z.-J. Shi, Acc. Chem. Res. 2010, 43, 1486–1495.
[17] B. S. Schreib, E. M. Carreira, J. Am. Chem. Soc. 2019, 141, 8758–8763.
[18] J. L. Brice, J. E. Harang, V. I. Timokhin, N. R. Anastasi, S. S. Stahl, J.
Am. Chem. Soc. 2005, 127, 2868–2869.
[19] a) F. Berger, M. B. Plutschack, J. Riegger, W. Yu, S. Speicher, M. Ho,
N. Frank, T. Ritter, Nature 2019, 567, 223−228. b) F. Ye, F. Berger, H.
Jia, J. Ford, A. Wortman, J. Borgel, C. Genicot, T. Ritter, Angew. Chem.,
Int. Ed. 2019, 58, 14615−14619. c) P. S. Engl, A. P. Häring, F. Berger,
G. Berger, A. Pérez-Bitrián, T. Ritter, J. Am. Chem. Soc. 2019, 141,
13346−13351. d) R. Sang, S. E. Korkis, W. Su, F. Ye, P. S. Engl, F.
J. D. Robert, M. C. Caserio, Basic Principles of Organic Chemistry 2nd
Ed., W. A. Benjamin, Inc.: Menlo Park, CA, 1977, Chapter 10; Chapter
22.
This article is protected by copyright. All rights reserved.