10.1002/anie.201806850
Angewandte Chemie International Edition
COMMUNICATION
F. Morana, K. A. Jorgensen, Org. Lett. 2012, 14, 1516-1519; (m) Y.
Hayashi, Y. Kawamoto, M. Honda, D. Okamura, S. Umemiya, Y. Noguchi,
T. Mukaiyama, I. Sato, Chem. - Eur. J. 2014, 20, 12072-12082; (n) Y.
Hayashi, D. Okamura, T. Yamazaki, Y. Ameda, H. Gotoh, S. Tsuzuki, T.
Uchimaru, D. Seebach, Chem. - Eur. J. 2014, 20, 17077-17088; (o) J. M.
Tian, Y. H. Yuan, Y. Q. Tu, F. M. Zhang, X. B. Zhang, S. H. Zhang, S. H.
Wang, X. M. Zhang, Chem. Commun. 2015, 51, 9979-9982; (p) R.
Šebesta, E. Veverková, S. Bilka, R. Baran, Synthesis 2016, 48, 1474-
1482; (q) A. Ueda, T. Umeno, M. Doi, K. Akagawa, K. Kudo, M. Tanaka,
J. Org. Chem. 2016, 81, 6343-6356.
Keywords: hybrid catalyst • organocatalysis • computational
enzymology • artificial enzyme • supramolecular chemistry
[1]
(a) Y. Cotelle, V. Lebrun, N. Sakai, T. R. Ward, S. Matile, ACS Centr. Sci.
2016, 2, 388-393; (b) T. M. Bräuer, Q. Zhang, K. Tiefenbacher, Angew.
Chem. Int. Ed. 2016, 55, 7698-7701; Angew. Chem. 2016, 128, 7829 -
7832; (c) T. M. Bräuer, Q. Zhang, K. Tiefenbacher, J. Am. Chem. Soc.
2017, 139, 17500-17507; (d) T. Himiyama, N. Taniguchi, S. Kato, A.
Onoda, T. Hayashi, Angew. Chem. Int. Ed. 2017, 56, 13618-13622;
Angew. Chem. 2017, 129, 13806-13810.
[13] K. Świderek, A. R. Nödling, Y. H. Tsai, L. Y. P. Luk, V. Moliner, J. Phys.
Chem. A 2018, 122, 451-459.
[2]
[3]
L. Li, C. Li, Z. Zhang, E. Alexov, J. Chem. Theory Comput. 2013, 9, 2126-
2136.
[14] U. E. Rusbandi, C. Lo, M. Skander, A. Ivanova, M. Creus, N. Humbert,
T. R. Ward, Adv. Synth. Catal. 2007, 349, 1923-1930.
(a) H. L. Levine, Y. Nakagawa, E. T. Kaiser, Biochem. Biophys. Res.
Commun. 1977, 76, 64-70; (b) H. E. Fried, E. T. Kaiser, J. Am. Chem.
Soc. 1981, 103, 182-184.
[15] (a) I. Mager, K. Zeitler, Org. Lett. 2010, 12, 1480-1483; (b) C. Jimeno,
Org. Biomol. Chem. 2016, 14, 6147-6164.
[4]
[5]
C. J. Suckling, L.-M. Zhu, Bioorg. & Med. Chem. Lett. 1993, 3, 531-534.
H. Kuang, M. L. Brown, R. R. Davies, E. C. Young, M. D. Distefano, J.
Am. Chem. Soc. 1996, 118, 10702-10706.
[16] M. J. Carroll, A. V. Gromova, K. R. Miller, H. Tang, X. S. Wang, A.
Tripathy, S. F. Singleton, E. J. Collins, A. L. Lee, J. Am. Chem. Soc. 2011,
133, 6422-6428.
[6]
[7]
Z. P. Wu, D. Hilvert, J. Am. Chem. Soc. 1990, 112, 5647-5648.
(a) L. Liu, Y. Cotelle, J. Klehr, N. Sakai, T. R. Ward, S. Matile, Chem. Sci.
2017, 8, 3770-3774; (b) M. M. Pellizzoni, F. Schwizer, C. W. Wood, V.
Sabatino, Y. Cotelle, S. Matile, D. N. Woolfson, T. R. Ward, ACS Catal.
2018, 8, 1476-1484.
[17] (a) K. Baer, M. Kraußer, E. Burda, W. Hummel, A. Berkessel, H. Gröger,
Angew. Chem. Int. Ed. 2009, 48, 9355-9358; Angew. Chem. 2009, 121,
9519-9522; (b) G. Rulli, N. Duangdee, K. Baer, W. Hummel, A. Berkessel,
H. Gröger, Angew. Chem. Int. Ed. 2011, 50, 7944-7947; Angew. Chem.
2011, 123, 8092-8095; (c) D. Larsen, M. Pittelkow, S. Karmakar, E. T.
Kool, Org. Lett. 2015, 17, 274-277.
[8]
[9]
(a) G. Lelais, D. W. C. MacMillan, Aldrichimica acta 2006, 2006, 79-87;
(b) A. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416-
5470; (c) D. W. C. MacMillan, Nature 2008, 455, 304-308.
C. M. Dundas, D. Demonte, S. Park, Applied Microbiol. Biotechnol. 2013,
97, 9343-9353.
[10] (a) M. E. Wilson, G. M. Whitesides, J. Am. Chem. Soc. 1978, 100, 306-
307; (b) C.-C. Lin, C.-W. Lin, A. S. C. Chan, Tetrahedron: Asymmetry
1999, 10, 1887-1893; (c) J. Collot, J. Gradinaru, N. Humbert, M. Skander,
A. Zocchi, T. R. Ward, J. Am. Chem. Soc. 2003, 125, 9030-9031; (d) C.
Letondor, A. Pordea, N. Humbert, A. Ivanova, S. Mazurek, M. Novic, T.
R. Ward, J. Am. Chem. Soc. 2006, 128, 8320-8328; (e) M. T. Reetz, J.
J. Peyralans, A. Maichele, Y. Fu, M. Maywald, Chem. Commun. 2006,
4318-4320; (f) M. Creus, A. Pordea, T. Rossel, A. Sardo, C. Letondor, A.
Ivanova, I. LeTrong, R. E. Stenkamp, T. R. Ward, Angew. Chem. Int. Ed.
2008, 47, 1400-1404; Angew. Chem. 2008, 120, 1422-1426; (g) A.
Pordea, T. R. Ward, Synlett 2009, 2009, 3225-3236; (h) M. Dürrenberger,
T. Heinisch, Y. M. Wilson, T. Rossel, E. Nogueira, L. Knörr, A. Mutschler,
K. Kersten, M. J. Zimbron, J. Pierron, T. Schirmer, T. R. Ward, Angew.
Chem. Int. Ed. 2011, 50, 3026-3029; Angew. Chem. 2011, 123, 3082-
308; (i) T. R. Ward, Acc. Chem. Res. 2011, 44, 47-57; (j) V. M. Robles,
M. Dürrenberger, T. Heinisch, A. Lledós, T. Schirmer, T. R. Ward, J.-D.
Maréchal, J. Am. Chem. Soc. 2014, 136, 15676-15683; (k) M. Jeschek,
R. Reuter, T. Heinisch, C. Trindler, J. Klehr, S. Panke, T. R. Ward, Nature
2016, 537, 661; (l) T. Heinisch, T. R. Ward, Acc. Chem. Res. 2016, 49,
1711-1721; (m) L. Olshansky, R. Huerta-Lavorie, A. I. Nguyen, J.
Vallapurackal, A. Furst, T. D. Tilley, A. S. Borovik, J. Am. Chem. Soc.
2018, 140, 2739-2742.
[11] J. Yang, K. Li, J.-T. Hou, L.-L. Li, C.-Y. Lu, Y.-M. Xie, X. Wang, X.-Q. Yu,
ACS Sens. 2016, 1, 166-172.
[12] (a) N. Halland, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2002, 67,
8331-8338; (b) D. Enders, M. R. Huttl, C. Grondal, G. Raabe, Nature
2006, 441, 861-863; (c) C. Palomo, A. Landa, A. Mielgo, M. Oiarbide, Á.
Puente, S. Vera, Angew. Chem. Int. Ed. 2007, 46, 8431-8435; Angew.
Chem. 2007, 119, 8583-8587; (d) H. Gotoh, H. Ishikawa, Y. Hayashi, Org.
Lett. 2007, 9, 5307-5309; (e) L. Zu, H. Xie, H. Li, J. Wang, W. Wang, Adv.
Synth. Catal. 2007, 349, 2660-2664; (f) L. Hojabri, A. Hartikka, F. M.
Moghaddam, P. I. Arvidsson, Adv. Synth. Catal. 2007, 349, 740-748; (g)
Y. Wang, P. Li, X. Liang, T. Y. Zhang, J. Ye, Chem. Commun. 2008,
1232-1234; (h) O. V. Maltsev, A. S. Kucherenko, I. P. Beletskaya, V. A.
Tartakovsky, S. G. Zlotin, Eur. J. Org. Chem. 2010, 2010, 2927-2933; (i)
S. K. Ghosh, Z. Zheng, B. Ni, Adv. Synth. Catal. 2010, 352, 2378-2382;
(j) Y. Hayashi, T. Itoh, H. Ishikawa, Angew. Chem. Int. Ed. 2011, 50,
3920-3924; Angew. Chem. 2011, 123, 4006-4010; (k) K. Akagawa, K.
Kudo, Angew. Chem. Int. Ed. 2012, 51, 12786-12789; Angew. Chem.
2012, 124, 12958-12961; (l) K. L. Jensen, P. H. Poulsen, B. S. Donslund,
This article is protected by copyright. All rights reserved.